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Hippocampus and entorhinal cortex form cognitive maps that

represent relations among memories within a multidimensional

space. While these relational maps have long been proposed to

contribute to episodic memory, recent work suggests that they

also support concept formation by representing relevant

features for discriminating among related concepts. Cognitive

maps may be refined by medial prefrontal cortex, which selects

dimensions to represent based on their behavioral relevance.

Hippocampal pattern completion, which is critical for retrieval

of episodic memories, may also contribute to generalization of

existing concepts to new exemplars. Navigation within

hippocampal cognitive maps, which is guided by grid coding in

entorhinal cortex, may contribute to imagination through

recombination of event elements or concept features.
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Introduction
Reasoning about the world is greatly facilitated by knowl-
edge of concepts, which represent combinations of fea-
tures shared by things of the same kind and allow gener-
alization from limited experience to novel exemplars.
Distinctions between concepts are drawn based on dif-
ferences in their component features and on the behav-
ioral relevance of those features. For example, when
shopping for a vehicle, prior knowledge about vehicle
categories — such as sedans or trucks and their associated
features such as shape, size, and cargo capacity — guides

decision making about new vehicles one has not encoun-
tered before. While concepts may relate to perceptual
categories, concepts may also be abstract; for instance,
social cognition may be supported by knowledge of
common personality types. Distinguishing between dis-
tinct concepts often requires simultaneous consideration
of multiple features. For example, determining some-
one’s personality type might require considering both
extraversion and conscientiousness. Recent work sug-
gests that concept learning is supported by multidimen-
sional cognitive maps within hippocampus, entorhinal
cortex, and medial prefrontal cortex (mPFC) [1–4]. Cog-
nitive maps encode multiple relationships within a com-
mon representational space [5], forming a simplified
model of stimulus relationships and rewards that can
be used to flexibly guide behavior [6,7]. We review recent
evidence suggesting how computational processes of
cognitive map formation, pattern completion, and
dimensionality reduction contribute to concept learning.
We propose that similar processes are involved in both
concept learning and episodic memory, contributing to
retrieval, generalization, and imagination in both
domains.

Hippocampus, entorhinal cortex, and medial
prefrontal cortex represent conceptual
cognitive maps
Recent work demonstrates that the hippocampus and
entorhinal cortex, which are thought to have critical roles
in mapping spatial environments [8–10], also form cogni-
tive maps of concepts that facilitate generalization of
relationships [2,11!!,12]. Conceptual cognitive maps rep-
resent features that distinguish different concepts [11!!].
A simple example of how hippocampus supports one-
dimensional representations that code the relationships
among items comes from transitive inference paradigms,
in which participants are presented with pairs of items
that are arranged in a hierarchy (e.g. A < B < C < D < E)
and must learn to select the correct item from each pair.
Rats with lesions that disconnect inputs to hippocampus
are able to correctly respond to the individual adjacent
pairs that were learned explicitly (e.g. B < C, D < E), but
fail to correctly infer relationships that have not been
directly experienced (e.g. B < D) [13]. These findings
indicate that hippocampus forms one-dimensional cogni-
tive maps, which represent the relational distance
between items and allow inference beyond direct expe-
rience. Similar to decisions about memory [14], hippo-
campal representations that code the relational distance
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between items are thought to guide decisions about
concepts [11!!].

However, real-world concepts often cannot be captured
by a single feature dimension; rather, multiple features
contribute to defining concept boundaries. Hippocampus
forms non-spatial cognitive maps that represent multiple
dimensions simultaneously [12,15,16!!,17], suggesting
that hippocampus might contribute to learning of multi-
dimensional concepts. In a recent study, participants
learned about social rankings of fictional people along
two dimensions, popularity and competence (Figure 1a)
[18!]. After learning, activation patterns in hippocampus
and entorhinal cortex during retrieval of individual people
reflected the distance between them in a 2-dimensional
space combining both dimensions. Although the individ-
ual dimensions were learned separately, they were repre-
sented within a unified cognitive map [18!], suggesting
that the hippocampal-entorhinal system forms multidi-
mensional maps to organize information about related
stimuli.

Multidimensional spaces in hippocampus may contribute
to concept learning by representing combinations of
features that are diagnostic of category membership
[3,19,20]. Consistent with this hypothesis, a recent study
found that hippocampal representations did not reflect all
features within a 3-D stimulus space; instead, hippocam-
pus represented only the two dimensions that were
important for a categorization decision [12]. Furthermore,
another study found that hippocampal concept represen-
tations are dynamic, emphasizing the feature dimensions
that are relevant for the current task [3]. The same stimuli
elicited distinct representations in hippocampus during
different concept learning problems that required attend-
ing to different feature combinations (Figure 1c) [3],
suggesting that hippocampus may represent distinctions
between concepts rather than perceptual feature dimen-
sions per se. These observations, which suggest that
hippocampal concept representations are context-depen-
dent, raise the possibility that hippocampus may repre-
sent only concept features that are currently relevant for
behavior. However, there is also evidence that hippocam-
pus represents associations between well-learned con-
cepts during passive viewing, suggesting a more general
role for hippocampus in forming stable concept represen-
tations [21,22]. An important direction for future research
will be to characterize the conditions under which hippo-
campal concept representations are invariant or task
dependent.

Regardless of the behavioral task, flexible access to con-
cept representations requires that different exemplars of a
concept, including exemplars that have never been seen
before, activate the same concept representation. The
episodes-to-concepts (EpCon) model proposes that such
generalization is supported by a process of integration

whereby different items come to elicit the same repre-
sentation [16!!]. The hippocampus has been implicated
in integrating events with overlapping features [23,24] to
connect related events and in integrating item represen-
tations to form clusters of items that predict similar
behavioral outcomes [11!!,16!!,25]. The EpCon model
proposes that these clusters support flexible concept
learning, which may facilitate categorization based on
complex concept boundaries that require considering
multiple dimensions simultaneously [16!!]. The EpCon
model successfully predicts the representational geome-
try of hippocampal representations after learning of dif-
ferent categorization problems (Figure 1c) [3]. An open
question, however, is how different scales of categories
are represented within hippocampus; for example, a
vehicle could be described broadly as a car, more specifi-
cally as a coupe, or very specifically as a 1967 Camaro. The
scale of hippocampal representations varies along its
anterior/posterior axis, raising the possibility that differ-
ent areas represent different conceptual scales [11!!].
Consistent with this proposal, one study found evidence
of an anterior/posterior gradient in how extended narra-
tives are represented in hippocampus [26]; however, it
remains unclear whether concepts are coded in a similar
manner.

A related facet of hippocampal representation that may be
advantageous for concept learning is its ability to encode
information hierarchically. A study in rats found that
population firing activity in hippocampus reflected a
hierarchy of multiple dimensions, with behaviorally dis-
tinct contexts represented in opposing neural codes
[27,28]. Hippocampus represented both superordinate
distinctions between stimuli (the different behavioral
contexts) and subordinate distinctions (e.g. the correct
object to select within a given context). Similarly, a recent
fMRI study found that events with a common associative
structure are represented in a hierarchical cognitive map
[29!]. Participants studied pairs of novel objects which
included initial (AB) pairs followed by overlapping (BC)
pairs (Figure 2a). After learning, item representations in
hippocampus, parahippocampal cortex, and mPFC exhib-
ited a consistent geometry that reflected the conceptual
triad relationship, that is, that all triads shared the same
structure regardless of their individual features
(Figure 2b). The common neural geometry formed a
hierarchy that represented both the general conceptual
structure while also distinguishing between triads of
associated items. The representation of the conceptual
dimension predicted later performance in retrieving indi-
vidual associations between triads, suggesting that hier-
archical concept representations may facilitate retrieval of
individual memories (Figure 2c). While yet to be tested
directly, hierarchical representations within hippocampus
may similarly facilitate different types of concept deci-
sions that rely on superordinate and subordinate
discriminations.
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Figure 1
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(a) Participants learned about separate hierarchies of fictional people along two dimensions, popularity and competence. After learning, although
these two dimensions were never relevant at the same time, neural representations in hippocampus (HC), entorhinal cortex (ERC), and mPFC
reflected the two-dimensional Euclidean distance between items, suggesting that the individual item dimensions were represented within a unified
space. Adapted from Ref. [18!]. (b) Grid cells, which are thought to provide a metric for navigating cognitive maps, fire at points along a
hexagonal grid within a space. Grid cell responses are predicted to result in greater activity during movement along preferred angles. Participants
learned to navigate a two-dimensional feature space to move to goal locations. Grid-like activity was observed in entorhinal cortex, mPFC, and
posterior cingulate cortex (PCC). Adapted from Ref. [2]. (c) Participants learned a series of different categorization problems using the same
stimuli that required taking into account one stimulus dimension (low complexity) or two dimensions (medium complexity). Item representations in
hippocampus reflect attentional weighting of relevant dimensions of different concept learning problems. In a one-dimensional problem, the
relevant stimulus dimension is weighted more heavily. In a two-dimensional problem, both relevant dimensions are weighted highly relative to an
irrelevant dimension. Adapted from Ref. [3]. (d) Through learning, activity patterns in mPFC formed lower-dimensional, compressed
representations which facilitated focusing on only the relevant dimension(s) for each problem. The mPFC representations formed during learning of
low-complexity and medium-complexity problems showed greater evidence of compression compared to the high-complexity problem that
requires combining information from three dimensions. Adapted from Ref. [43!!].
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Entorhinal representations, along with those in hippo-
campus discussed above, may provide additional capacity
for multidimensional organization that is beneficial for
concept learning. Entorhinal grid cells, which fire at
regularly spaced intervals within a spatial environment
[30], are thought to provide a consistent spatial metric that
supports navigation within cognitive maps [31]. A recent
study found that grid-like activity in entorhinal cortex,
measured using fMRI, may also provide a metric within
conceptual cognitive maps [2]. When participants navi-
gated through a ‘bird space’ composed of combinations of
leg and neck length of cartoon birds, entorhinal cortex
exhibited grid-like activation, suggesting that entorhinal
cortex has a general role in navigating both spatial and
non-spatial cognitive maps (Figure 1b) [2]. While the
involvement of grid cells in representing 2-D spaces is
well-established, representing the relevant features of a
concept may require higher-dimensional spaces [3].
Simulations of grid cell modules in entorhinal cortex
suggest that it may be able to flexibly represent
higher-dimensional spaces [32], potentially facilitating
navigation of higher-dimensional cognitive maps of con-
cept features.

While the hippocampal-entorhinal system may represent
multidimensional cognitive maps with Euclidean geom-
etry [18!,31], recent work suggests that Euclidean cogni-
tive maps may result from a more general capacity of this
system to learn graph structures [33!!,34–36]. Learning of

different graph structures that define relationships
between concepts may support formation of cognitive
maps of both continuous spaces (e.g. the popularity and
competence of different people) and other relational
structures (e.g. relationships between people in a family
tree) [33!!].

When learning real-world concepts (e.g. types of vehicles,
personality types), a key challenge is to determine what
features are relevant for distinguishing between concepts
[37]. The mPFC has been proposed to play a critical role
in determining the behavioral relevance of stimuli based
on current goals [38], a process critical for concept learn-
ing. The mPFC receives input from the hippocampus,
which is thought to provide information about the current
context [39,40]. The mPFC represents a cognitive map of
stimulus-outcome relationships and is thought to shape
hippocampal representations to select relevant dimen-
sions based on the current context [41,42]. Cognitive
maps in mPFC are flexible, forming efficient representa-
tions that reflect the behavioral relevance of features such
as changes in context [4] or stimulus dimensions [18!]. A
recent concept learning study showed that mPFC per-
forms goal-directed dimensionality reduction to form
efficient representations, in which lower-dimensional
representations are formed for less complex concepts.
Importantly, mPFC representations were learned, with
concept representation being higher-dimensional early
in learning and then compressed over learning to only
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Cognitive maps form organized representations of conceptually similar events. (a) Participants studied initial (AB) and overlapping (BC) pairs that
shared a common object and were instructed to learn each pair. They studied 12 triads with the same structure. (b) Brain activity elicited by each
item was measured using fMRI before and after the study phase. There was no particular organization before the study phase, but after study
neural representations in medial temporal lobe and frontoparietal areas reflected the common structure across events in the form of consistent
representational geometry of the distinction between A and C items. (c) The reliability of neural organization across triads in parahippocampal
cortex, lateral parietal cortex, and hippocampus predicted performance on an inference test where participants had to select the correct A item
that had been indirectly associated with a cue C item. These results suggest that retrieval may be guided by navigation within an organized
cognitive map using a vector-based retrieval mechanism. Adapted from Ref. [29!].
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represent relevant dimensions (Figure 1d) [43!!]. Hippo-
campus is functionally coupled with mPFC during con-
cept learning, suggesting that mPFC input helps refine
hippocampal representation to form efficient concept
spaces that are tuned based on goal relevance
(Figure 1c) [16!!].

Parallel computations support decisions
about concepts and episodic memory
Real-world experiences include both conceptual knowl-
edge and episodic details [16!!]. For example, a memory
of seeing your neighbor’s new car may include multiple
levels of information, including the context (your neigh-
borhood), items and entities within that context (your
neighbor and their new sportscar), and relevant concepts
(e.g. knowledge about the features of cars in general and
sportscars in particular). Multidimensional content
encoded within hippocampal representations, together
with a common set of computations, may support retrieval
of both episodic detail and conceptual knowledge (Fig-
ure 3) [16!!]. In this section, we review how the mecha-
nisms of pattern completion and recombination drive
expression of both episodic memory and concepts in
different cognitive tasks.

Recurrent connections within hippocampus form
attractor states, whereby patterns near to a learned
attractor will settle into the learned state [44]. In the

context of episodic memory, attractor states allow pattern
completion of stored episodes, which are conjunctions of
context and item information [45]. For example, seeing
your neighbor’s car again might cue retrieval of the
context in which you saw it earlier. Recent work suggests
that hippocampal pattern completion might also be
involved in retrieval of individual concepts [46]. Partici-
pants were asked to generate features related to a con-
cept, such as ‘book’ or ‘grapefruit.’ Participants with
hippocampal damage generally produced features that
were semantically related to the prompt, while healthy
controls produced valid features that were more distantly
related [46]. These results suggest that hippocampus may
facilitate pattern completion of concept features by
retrieving attractor states representing multidimensional
concept representations [47].

Multidimensional hippocampal representations may fur-
ther support imagination of both episodes and concepts
[48,49]. Hippocampus is thought to contribute to simula-
tions of future experiences by flexibly recombining fea-
tures from existing episodic memories; for example,
retrieving a memory of visiting a college campus may
help one to imagine meeting a new friend there (Figure 3)
[1,48]. Consistent with this proposal, activation patterns
measured in hippocampus during retrieval of episodic
memories are reactivated during imagination of new
episodes composed from the same elements [50].
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(a) Hippocampus is thought to bring together information about contexts (e.g. an office, a beach, and a college campus) and information about
items such as people. Recent evidence suggests this factorization of situations into combinations of items and context facilitates flexible
recombination of elements to facilitate imagination or reconstruction of specific episodes (here, imagining a new episode involving James at the
college campus). (b) Within a context, such as the context of selecting a new vehicle, hippocampus may represent relevant item dimensions such
as cargo capacity and passenger capacity. Representation of relevant feature dimensions may support a number of operations, including
categorization (e.g., identifying a new vehicle as a truck) and reconstruction of features of a specific remembered item (e.g., if the vehicle was a
truck it must have had a truck bed). Multidimensional spaces in hippocampus may also support exploration of new concepts through flexible
recombination of features; for example, a potential vehicle located at the point between sedans and SUVs could be predicted to have a different
set of properties from known categories.
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Similarly, multidimensional hippocampal representations
may support imagination in the conceptual domain. For
example, if one is trying to imagine an ideal new family
vehicle, mPFC may select relevant item dimensions such
as cargo capacity and passenger capacity to be repre-
sented within the hippocampal-entorhinal system. Each
of these dimensions may be related to multiple stimulus
features (e.g. low passenger capacity is associated with
smaller size, fewer doors, and fewer seats). Exploration of
this feature space could then support imagination of novel
concepts that involve novel feature combinations [11!!];
for example, one might imagine a vehicle that is interme-
diate between a sedan and an SUV, resulting in a new
concept of a crossover vehicle (Figure 3). Consistent with
this account, hippocampus represents conjunctions of
individual concepts (e.g. tea, jelly) when they are com-
bined to form a new concept (e.g. tea-jelly) [51]. At the
same time, mPFC also demonstrates evidence of con-
junctive representations and reflects the perceived value
of the new concept, suggesting that it may have a role in
evaluating hypothetical concepts [51].

Conclusions
A key challenge in successfully navigating our complex
world is to identify important concepts and the features
that define those concepts. Growing evidence suggests
that hippocampus, entorhinal cortex, and mPFC support
rapid concept learning by forming multidimensional cog-
nitive maps of relevant features. Dimensionality reduc-
tion in mPFC may facilitate selection of behaviorally
relevant features, guiding formation of attractor states
in hippocampus that support concept generalization.
Finally, hippocampal and entorhinal cognitive maps
may guide recombination of concept features, supporting
imagination of novel concepts.
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