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Does memory reactivation during sleep support generalization at the cost of 
memory specifics? 
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A B S T R A C T   

Sleep is important for memory, but does it favor consolidation of specific details or extraction of generalized 
information? Both may occur together when memories are reactivated during sleep, or a loss of certain memory 
details may facilitate generalization. To examine these issues, we tested memory in participants who viewed 
landscape paintings by six artists. Paintings were cropped to show only a section of the scene. During a learning 
phase, each painting section was presented with the artist’s name and with a nonverbal sound that had been 
uniquely associated with that artist. In a test of memory for specifics, participants were shown arrays of six 
painting sections, all by the same artist. Participants attempted to select the one that was seen in the learning 
phase. Generalization was tested by asking participants to view new paintings and, for each one, decide which of 
the six artists created it. After this testing, participants had a 90-minute sleep opportunity with polysomno-
graphic monitoring. When slow-wave sleep was detected, three of the sound cues associated with the artists were 
repeatedly presented without waking the participants. After sleep, participants were again tested for memory 
specifics and generalization. Memory reactivation during sleep due to the sound cues led to a relative decline in 
accuracy on the specifics test, which could indicate the transition to a loss of detail that facilitates generalization, 
particularly details such as the borders. Generalization performance showed very little change after sleep and 
was unaffected by the sound cues. Although results tentatively implicate sleep in memory transformation, further 
research is needed to examine memory change across longer time periods.   

1. Introduction 

Memory serves many functions in our daily lives. Two of those are 
recalling a specific event and generalizing across many instances to form 
a schema abstracted from prior knowledge. For example, a scuba diver 
may recall visiting the Great Barrier Reef and spotting a highly 
venomous stonefish resting on the reef’s floor. This recollection is an 
example of a specific, highly detailed event memory. On the other hand, 
that same diver may see a similar fish while visiting the Solomon Islands, 
and based on shared characteristics like textured skin and spikey fins, 
hypothesize that it’s a midget stonefish, smaller but equally venomous. 
This inference about the novel fish is an example of generalization. 
Memory researchers have long understood that these two types of 

memory exist in parallel. However, an open question about these two 
types of memory, here called specific and generalized memory, is the 
degree to which they develop separately versus together in opposition 
with one another? 

The complementary-learning-systems (CLS) approach tackles this 
question by ascribing the two types of memory to different brain circuits 
(McClelland & O’Reilly, 1995; O’Reilly & Norman, 2002; Schapiro, 
Turk-Browne, et al., 2017). In the CLS model, the hippocampus rapidly 
encodes unique, individual memories and distinguishes them from one 
another via pattern separation through sparse encoding (McClelland & 
O’Reilly, 1995; Schapiro, Turk-Browne, et al., 2017; Yassa & Stark, 
2011). Then, over longer periods of time the cortex extracts shared 
features across many events to form a generalized memory. Generalized 
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memory allows us to recognize relations between new experiences and 
past events to guide decision making in novel scenarios. This trans-
formation of memory from specific to general has been studied using 
many paradigms, discussed further below, such as extracting hidden 
rules, creative problem solving, relational knowledge, and semantic 
category structure (Beijamini et al., 2014; Lerner & Gluck, 2019; Lutz 
et al., 2017; Schapiro, McDevitt, et al., 2017; Verleger et al., 2013). 
Several researchers have argued that the process of extracting regular-
ities and forming generalized memories can occur throughout the day 
but is especially prevalent during sleep (Ellenbogen et al., 2006; Norman 
et al., 2005). 

Memory consolidation processes that occur through sleep may be 
particularly important for transforming individual experiences into 
generalized memories. The process of stabilizing and integrating mem-
ories is referred to as memory consolidation. Memory consolidation is 
thought to rely on repeated reactivation of a prior memory, which is 
stabilized over time (Paller et al., 2020). Although it can be difficult to 
measure the neurophysiological interactions between the hippocampus 
and widespread neocortical regions engaged during memory consoli-
dation, evidence is increasingly pointing to aspects of sleep as important 
for the consolidation process. Most relevant in the present context, sleep 
has been found to both protect specific memories and enhance gener-
alization across memories to create schemas (Hanert et al., 2017; 
Marshall & Born, 2007; Beijamini et al., 2014; Inostroza & Born, 2013). 
In at least one case where researchers considered both specific and 
generalized memory over sleep and wake, a trade-off was observed 
between the two such that memory for specifics declined over sleep 
while generalization improved (Lau et al., 2011). However, there are 
interpretive issues in studies that compare periods of sleep to wake. 
Researchers often use delays of 10 h or more and rely on comparing 
overnight sleep to daytime wakefulness. This type of design leads to 
confounding differences in circadian factors such as attention and 
motivation (Murray et al., 2009; Valdez et al., 2005). Even if circadian 
factors are controlled, as in a nap study, interference from other learning 
typically is confounded between sleep and wake conditions, such that 
sleep benefits might arise merely from reduced interference in the sleep 
condition. 

Rather than compare memory following periods of sleep versus 
wake, these interpretive shortcomings can be avoided by manipulating 
memory reactivation during sleep. Targeted memory reactivation 
(TMR) is an experimental tool that allows researchers to systematically 
manipulate memory reactivation and observe effects on consolidation 
(Oudiette & Paller, 2013). During learning, participants are exposed to 
an auditory or olfactory cue stimulus together with the information they 
are meant to learn, such as the locations of objects. During sleep, that 
cue is presented again in a manner designed to prevent rousing the 
participant to wakefulness. In many experiments, cues functioned to 
reactivate prior memories, such that on a later test after awakening 
participants produced better memory performance for cued compared to 
uncued information (see TMR meta-analysis by Hu et al., 2020). 

Many of the earliest studies that established this TMR methodology 
focused on spatial memory (e.g., Rasch et al., 2007; Rudoy et al., 2009). 
A reasonable way to view these spatial TMR findings is that they 
represent improvement of detailed memories, because the higher ac-
curacy found for cued compared to uncued objects required recall of 
specific locations in these spatial tests. Yet, spatial memory is only one of 
many types of memory that can be improved by cues presented during 
sleep. The recent literature shows that TMR can impact multiple sub-
types of declarative memory (Hu et al., 2020), although the number of 
different memory paradigms that have been examined to date is still 
rather small. TMR has been used with several paradigms for assessing 
generalization memory, such as grammatical generalization, general-
izing across emotional valence, and lexical competition (Batterink & 
Paller, 2017; Groch et al., 2016; Tamminen et al., 2017). These studies 
showed that TMR can be used to selectively improve generalization in 
these paradigms. However, there have been no studies using category 

learning as a measure of generalization. It also remains unclear whether 
generalization improves in conjunction with the loss of detailed, specific 
memories. Our study thus addresses whether memory reactivation 
during sleep entails a trade-off between these two forms of memory. In 
the present study, we employ TMR as a tool for examining relationships 
between generalization and memory specificity during sleep 
consolidation. 

Given our goal of understanding the possible relationship between a 
loss of memory details and the development of generalization, a para-
digm is needed that can be used to measure both categorization and 
memory specificity. One such method involves naturalistic stimuli that 
can readily be categorized — paintings by different artists. In this case, 
generalization corresponds to the ability, developed after viewing many 
of an artist’s paintings, to recognize that artist’s style when confronted 
with a new painting. There are several advantages of examining memory 
for paintings. First, memory for specifics can be assessed in a straight-
forward way by asking participants whether they had seen a particular 
painting earlier in the experiment. Second, generalization memory can 
be assessed by showing new paintings and querying participants about 
which artist painted it, which conforms with a common sort of catego-
rization knowledge. Third, we can construct these two tests so that they 
are similar in the level of performance produced and with the same 
baseline level (i.e., six-alternative forced-choice recognition, such that 
responding entirely randomly would yield a correct answer one out of 
six times on average). Fourth, we can be reasonably confident that the 
relevant learning took place during the experiment, given that partici-
pants are unlikely to have any knowledge of the works of art we selected. 
We thus adapted the procedures and paintings used in two prior studies 
of generalization learning (Kornell et al., 2010; Kornell & Bjork, 2008). 

In the present study, we tested both types of memory using landscape 
paintings by six relatively unknown artists. Our aim was to evaluate 
whether memory reactivation during sleep altered specific or general-
ized memories. One test assessed the ability to recognize specific 
paintings and the other generalized knowledge of each artists’ style with 
respect to new paintings. In a learning phase, participants viewed 36 
paintings repeatedly and gradually became proficient at selecting the 
name of the corresponding artist when viewing each painting. We 
administered TMR during a nap that followed this learning, and we used 
electroencephalography (EEG) measures to ensure that cues were pre-
sented during slow-wave sleep (SWS). We hypothesized that general-
ization and memory specificity would be affected by memory 
reactivation during sleep in opposite directions, reflecting a trade-off 
between the two memory types (Witkowski et al., 2020). 

2. Method 

2.1. Participants 

We enrolled 36 participants who were undergraduate students at 
Northwestern University or local community members. Data from seven 
participants were excluded: two failed to learn the sound-to-artist as-
sociations, one reported insomnia, one reported hearing sound cues 
during the nap, and three received no cues because they never reached 
SWS. Participants reported no history of neurological or sleep disorders. 
We requested that they wake up 2 h earlier than their usual wake time 
and abstain from caffeine on the day of the experiment. The North-
western University Institutional Review Board approved the procedure 
and informed consent was obtained. The sample described here was 
comprised of 29 individuals (21 female, 1 non-binary, 7 male), they 
were right-handed except for one left-hander, and their mean age was 
21.07 yrs. 

2.2. Stimuli 

The stimuli included 108 paintings by 6 different artists (18 paint-
ings each). Four of these artists (Judy Hawkins, Philip Juras, Ron 
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Schlorff, George Wexler) were from the study by Kornell and Bjork 
(2008) and two (Richard McKinley & Jamie Grossman) were from the 
study by Noh, Bjork, and Preston (in preparation). The paintings 
depicted landscapes or skyscapes that were cropped to remove the art-
ists’ names. All but one participant claimed to be naive to the artists’ 
names and all were naive to the paintings. For the learning and recog-
nition portions, 72 paintings (12 by each artist) were divided vertically 
into 3 equal-sized sections, henceforth termed “slices.” 

In addition, we used six auditory stimuli, each 500 ms in duration 
(hoot, meow, thunder, applause, cricket, bell). Each sound was arbi-
trarily assigned to an artist, and the same sound-artist name pairings 
were used for all participants. 

2.3. Procedure 

Participants arrived at the lab between noon and 2 pm. They 
completed the Stanford Sleepiness Scale and then began the eight-phase 
study (Fig. 1a). 

2.3.1. Sound-Name association training 
Participants were instructed to learn the sound-name pairings for a 

later test. Participants heard each sound, and after a 500-ms delay, they 
saw the associated artist’s name on the screen. The name remained for 
500 ms, and then a “next” button appeared to signal participants that 
they could advance to the next pairing via a mouse click. The list of six 
sound-name pairings was presented three times, each time in a different 
random order. 

2.3.2. Sound-Name association test 
One sound was played through the speakers and participants had to 

select the corresponding artist name from a list of the six names. There 
was no time constraint on their selection. The participant was then 
shown the correct name. In this same way, forced-choice recognition of 
the entire list of six sound-name pairings was tested twice. 

2.3.3. Learning 
A series of painting slices appeared in a random order in the center of 

the screen above the six artist names (Fig. 1b). When each slice 
appeared, participants had 10 s to select the corresponding artist. After 
participants responded, they were shown the correct name, and the 
associated sound was played. Each block included six trials, each with 
one painting slice from each artist (and with the constraint that the other 

two slices from the same painting were not shown in the learning phase). 
Each set of six painting slices was displayed five times per block, each 
time in a different random order. The learning phase included six blocks, 
each with unique painting slices, such that participants studied a total of 
36 painting slices. Before the learning section began, participants were 
instructed that their memory would be tested for both the specific 
painting slice as well as their ability to generalize an artists’ style. 

2.3.4. Sound-name association Re-test 
To verify that participants learned the sound-name associations, they 

were tested again. The procedure was the same as the Sound-Name 
Association Test, except the list of six pairings was tested once. Partic-
ipants were required to correctly identify at least five of the sound-name 
associations in order to be included in the final analyses. 

2.3.5. Pre-sleep memory tests 
We then tested both generalization and memory specificity. The 

generalization test was always first (Fig. 1c). It included 18 whole 
paintings (3 by each artist) that were not previously seen either as slices 
or as a whole, nor were they ever shown again. One of these paintings 
was shown on each trial along with the six artist names (in a random 
order). Participants were instructed to select the artist they thought 
created the painting. They were allowed 10 s to respond and were not 
given feedback. Participants were not instructed to respond as quickly as 
possible on either of the tests. 

In the memory specificity test (Fig. 1d), participants were tested on 
painting slices from the learning phase. On each trial, participants saw 
an array of six slices in two rows. Each row contained three slices, or-
dered from left to right such that participants could visualize the cor-
responding full paintings. The same artist created both paintings, which 
were similar, but one had never been seen before. Participants attemp-
ted to select the single slice that had appeared in the learning phase 
within 10 s; no feedback was given after their selection. There were 18 
trials during the specificity test, 3 trials per artist, shown in a random 
order. 

2.3.6. Sleep physiology 
EEG, electro-oculogram, and electromyogram were recorded using a 

Neuroscan EEG system, with a sampling rate of 250 Hz and a bandpass of 
0.1–100 Hz. Electrodes in a cap were located at 21 scalp locations from 
the 10–20 system (Cz, C3, C4, Fpz, Fp1, Fp2, Fz, F3, F4, F7, F8, Pz, P3, 
P4, T3, T4, T5, T6, Oz, O1, and O2). Additionally, electrodes were 

Fig. 1. Outline of the experimental organization. (a) Flowchart representing the phases of the experiment and approximate time of each phase. (b-d) Example trials 
from three phases of the procedure. (b) In the learning phase, participants viewed a painting slice and selected the artist’s name. (c) In the generalization test, 
participants viewed a painting and selected the artist who painted it. (d) In the specificity test, participants saw six slices (from two paintings) and selected the slice 
they viewed during learning. 
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placed on the left and right mastoid, lateral to the right eye, below the 
left eye, and on the chin. Impedance was lowered for all electrodes (≤5 
kΩ). EEG preprocessing was completed using the EEGLAB MATLAB 
package (Delorme & Makeig, 2004). Data were re-referenced to the 
averaged mastoids and excessively noisy scalp channels (7.2%) were 
interpolated using the spherical interpolation method in EEGLAB. 

2.3.7. Nap 
The futon chair used during most phases of the experiment was 

converted to a bed and covered with sheets, a pillow, and a blanket. 
White noise quietly played through speakers (around 35–40 dB), and 
participants were told they would have a 90-min nap opportunity. Sleep 
physiology was monitored online. When the experimenter estimated 
that the participant reached SWS for at least two 30-s epochs, half of the 
six sound cues were repeatedly presented in random order. The three 
cues were selected via an algorithm that sorted through all possible 
combinations of artists labeled as either cued or uncued. The algorithm 
then assigned the combination a value, denoting the difference in pre- 
sleep accuracy for both the generalization and specificity test. After 
iterating through all possible combinations, the algorithm produced the 
set of three cued artists that would have the smallest possible difference 
between cued and uncued for both tests. Each sound cue was 500 ms in 
duration with a 3500-ms interstimulus interval between the end of the 
previous cue and the start of the next. The sequence of sounds continued 
while the participant remained in SWS. If there was an arousal during 
SWS (as defined in the AASM scoring manual), cuing was paused and did 
not resume until at least two 30-s epochs of SWS occurred. After 90 min, 
participants were awakened if they weren’t already awake. If the 
participant was still in SWS, the experimenter waited up to 15 min so 
that the participant could be woken from lighter sleep. After waking, 
participants were given a short break (approximately 10 min) to get 
water or use the restroom before beginning the post-sleep tests. 

2.3.8. Post-sleep memory tests 
The testing procedure was identical to that used with pre-sleep tests, 

but with different stimuli. Participants were first tested on 18 new 
paintings for generalization. In the memory specificity test, 18 painting 
slices from learning that weren’t used in pre-sleep testing appeared 
together with new slices, always from the same artist. Additionally, 
participants completed the sound-name association test a final time. 

2.3.9. Debriefing 
Participants were asked whether they experienced any disturbances 

during the nap period. If they reported hearing a sound, they were asked 
to specify if it was one of the sound cues or another disruption. After 
completion of the final memory test, participants answered the 
Morningness-Eveningness Questionnaire. All participants were then 
paid for their participation. 

2.4. Analyses 

2.4.1. Behavior 
We first conducted paired t-tests to verify that accuracy for cued and 

uncued artists were balanced before sleep. Next, we conducted two-way 
within-subjects ANOVAs with factors cuing (Cued, Uncued) and time 
(Pre-Sleep, Post-Sleep). These analyses were conducted separately for 
accuracy scores from generalization and memory specificity tests. All 
tests were two-tailed (alpha = 0.05). 

2.4.2. Sleep staging 
Naps were scored offline using the sleep SMG package in MATLAB 

(http://sleepsmg.sourceforge.net). The 90-min nap was scored in 30-s 
epochs using scalp recordings from C3, Fz, Fp1, P4, and Oz, two eye 
channels (horizontal to the right eye, vertical to the left), and a chin- 
recorded EMG. To ensure accurate sleep scoring, an expert (D.G.) 
scored all sleep physiology data prepared without any indication of 

when sounds were presented. 

3. Results 

3.1. Sleep 

Polysomnographic scoring revealed time spent in each sleep stage, as 
shown in Table 1. Participants reported an average sleepiness rating of 
3.21 ± 0.15 (SEM) on the Stanford Sleepiness Scale, where the scale 
ranges from 1 to 7 and smaller values indicate greater wakefulness. 
Participants also reported an average score of 42.82 ± 1.86 (range: 
25–71) on the Morningness-Eveningness Questionnaire, indicating 
neither a preference for the morning nor evening. We found no signifi-
cant correlations between time in each sleep stage and behavioral 
measures in the generalization and specificity tests. 

3.2. Sound-name association accuracy 

Participants were highly accurate at identifying the sound cues that 
matched each artist’s name. Because there were 6 alternatives, chance- 
level recognition was 16.67%. On the three administrations of the 
sound-name association test, accuracy was 91.09% ± 5.30%, 96.55% ±
3.40%, and 96.55% ± 3.40%, respectively. By the last test, 26 out of the 
29 participants recognized sound-artist associations with 100% accu-
racy and the other 3 selected the correct artist for five of the six sounds 
correctly. 

3.3. Generalization performance 

At pre-sleep memory testing, participants correctly identified the 
artists of novel paintings with 57.85% ± 2.87% accuracy (range =
22.22–94.44%; chance = 16.67%). Pre- and post-sleep results are 
compared in Fig. 2a. Consistent with the goal of the stratification 
method for assigning artists to the two conditions, generalization ac-
curacy did not differ between cued and uncued paintings prior to sleep, t 
(28) = 0.72, p = 0.47. 

Next, we assessed the influence of TMR on the change in general-
ization accuracy from before to after sleep. There was no effect of TMR 
as reflected by the interaction of cueing and time (pre-post), F(1, 27) =
0.01, p = 0.93. Moreover, the mean change in generalization accuracy 
from pre-sleep to post-sleep, combined for cued and uncued conditions, 
averaged 1.72% ± 3.46%. This minor amount of forgetting was negli-
gible, F(1, 27) = 0.25, p = 0.62. 

3.4. Specificity performance 

At pre-sleep testing, mean accuracy on the specificity test was 
60.73% ± 2.37% (range = 38.89% to 88.89%; chance = 16.67%). This 
level of accuracy exceeded 33%, which would be the accuracy expected 
if participants guessed after ruling out the three choices corresponding 
to the incorrect painting. Pre- and post-sleep results are compared in 
Fig. 2b. Consistent with the goal of the stratification method for 
assigning artists to the two conditions, specificity accuracy did not differ 
between cued and uncued paintings prior to sleep, t(28) = 0.55, p =
0.59. 

We then assessed the influence of TMR on the change in specificity 
accuracy from before to after sleep. TMR differentially impacted per-
formance as reflected by differences in cued and uncued conditions, F(1, 
27) = 5.77, p = 0.02 (cuing × time interaction). There was also an 

Table 1 
Time spent in each stage of sleep (min) across participants.   

Wake N1 N2 SWS REM 

Mean 18.93 40.57 19.36 19.23 5.29 
SEM 5.64 3.06 4.92 4.30 2.33  
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overall decline in accuracy, F(1, 27) = 32.55, p < 0.001 (Cohen’s d =
0.25), which measured 12.45% ± 2.18% averaged across conditions. A 
larger decline was observed for cued paintings (17.62% ± 2.84%) than 
for uncued paintings (7.28% ± 3.28%; Cohen’s d = 0.08). 

We additionally considered a more lenient measure for memory 
specificity. Rather than asking if participants selected the correct slice, 
we examined whether participants selected a slice from the correct 
painting (regardless of whether that was the correct slice). At pre-sleep 
testing, mean accuracy on the lenient measure of the specificity test was 
73.75% ± 2.13% (range = 44.44% to 94.44%; chance = 50%). All but 
two participants exceeded the chance level of 50% accuracy, which 
would be the accuracy expected if participants guessed between the two 
paintings (regardless of slice). Although our stratification method did 
not assign artists to cued or uncued conditions based on this measure of 
performance, cued (87.36% ± 2.06%) and uncued (87.74% ± 2.03%) 
paintings were balanced at pre-sleep test [t(28) = 0.13, p = 0.89]. 

We then assessed the influence of TMR on the change in lenient ac-
curacy from before to after sleep. TMR did not differentially impact 
performance as reflected by differences in cued and uncued conditions, F 
(1, 27) = 0.11, p = 0.74 (cuing × time interaction). There was only an 
overall decline in lenient accuracy over time, F(1, 27) = 15.95, p <
0.001) for both cued (78.93% ± 2.53%) and uncued (80.84%% ±
2.44%) conditions. The decline was 8.43% ± 3.20% for cued whole 
paintings and 7.28% ± 3.27% for uncued whole paintings. 

3.5. Reaction times 

Participants were not instructed to produce speeded responses, so 
there could have been idiosyncratic differences in speed across partici-
pants. However, we included an analysis to determine if TMR influenced 
speed of response. Overall, response times averaged 4.07 s ± 0.19 on the 
generalization test and 5.39 s ± 0.22 on the specificity test. Response 
speed did not differ between cued and uncued paintings prior to sleep in 
the generalization test [t(28) = 0.55, p = 0.58] or in the specificity test [t 
(28) = 0.60, p = 0.55]. Reaction times did not differ between TMR 
conditions across time (cuing × time interaction) in the generalization 
test [F(1, 27) = 0.62, p = 0.44] or in the specificity test [F(1, 27) = 1.69, 
p = 0.20]. Finally, we tested whether reaction times across both 

conditions (cued and uncued) changed from pre-sleep to post-sleep. In 
the generalization test, there was an increase in reaction time of 0.89 s ±
0.17 from pre-sleep to post-sleep, t(28) = 2.85, p < 0.01. There was no 
significant change in response speed in the specificity test, t(28) = 0.78, 
p = 0.44. 

4. Discussion 

In this study, we used targeted memory reactivation during sleep to 
test whether memory reactivation influenced two aspects of memory for 
paintings, generalization and memory specificity. Results showed that 
generalized knowledge of artists’ styles a short time after learning was 
not affected by targeted memory reactivation, whereas detailed memory 
of individual paintings was selectively worsened. Our interpretation is 
that memory reactivation during sleep initiated a generalization process 
whereby some irrelevant details were lost (such as exact placement of 
features within the paintings or the exact way in which the landscape 
features were placed at the border of the painting), presumably in the 
service of ultimately extracting meaningful aspects of each painter’s 
unique style. Loss of this detail made participants more likely to select 
one of the adjacent slices instead of the correct slice, which showed they 
remembered the painting at a general level but could not identify the 
exact section that they had previously viewed. Given this interpretation, 
this is the first study to link memory reactivation during sleep with a 
decline in memory specificity and thereby support the notion that sleep 
is operative for a beneficial process of memory transformation. 

Our results may seem counter to previous TMR research, as the 
majority of findings show that cues produce only memory benefits (Hu 
et al., 2020). Here, on the specificity test administered after the nap, 
accuracy preferentially decreased for paintings by artists whose corre-
sponding sound was presented during the nap. It is remarkable that 
participants performed worse on these specific paintings and did not 
even know that learning-associated sounds were presented while they 
slept. 

A detrimental impact on memory could conceivably arise from 
various aspects of the TMR procedure. Some previous studies found that 
TMR was not helpful when cues occurred too closely together (Farthouat 
et al., 2017; Schreiner et al., 2015). In the present study, we attempted to 

Fig. 2. Performance on the two memory measures. (a) Average percent correct on the generalization test for cued and uncued artists on pre-nap and post-nap tests. 
Dashed line represents chance performance (16.67%). Error bars show SEM. (b) Average percent correct on the memory specificity test for cued and uncued artists on 
pre-nap and post-nap tests. Dashed line represents chance performance (16.67%). Error bars show SEM. 
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avoid potential interference of this sort by inserting a 3500-ms delay 
between consecutive cues. Another way in which TMR might disrupt 
memory is via sleep disruption. For example, TMR was found to nega-
tively impact memory for cued items in an investigation of an at-home 
application of TMR (Göldi & Rasch, 2019). Memory accuracy 
decreased if participants reported that cues woke them or disrupted 
their sleep. Our participants did not complain of sleep disruption, 
although we did not obtain detailed self-reports. In a recent study of 
learning face-name associations, we used an electrophysiological 
method for assessing sleep disruption and found evidence linking sleep 
disruption with memory decline for cued information (Whitmore et al., 
2021). In the present study, we conducted the same sort of analysis, 
focusing particularly on activity increases in the alpha band during the 
time after a cue. We found no evidence to link such electrophysiological 
signs of sleep disruption with memory effects on the specificity test. 

Another possible explanation for TMR cues producing memory 
decline is that cuing a set of paintings with a single sound created 
interference. In other words, there could be a type of retrieval-induced 
forgetting, which typically occurs when rehearsal of some information 
leads to forgetting of other information that was originally learned at the 
same time (Perfect et al., 2004). For example, an artist sound may have 
preferentially reactivated one of the artist’s paintings while simulta-
neously inhibiting the others, producing an overall memory decrement. 
Relatedly, we conducted another TMR study where each cue was asso-
ciated with one, two, or six items in a spatial learning task (Schechtman 
et al., 2020). A similar memory benefit was found for these sets of cued 
items, regardless of set size. That is, six items cued by one sound showed 
the same spatial memory improvement as one item cued by one sound. 
The items of each set shared a categorical label (e.g., cats) and a 
semantically related cue (e.g., meow sound), apparently without inter-
ference among items in a set. Although a retrieval-induced forgetting 
mechanism may not account for the present results, we cannot rule out 
some interactions among memories that may have contributed to 
interference. In addition, the close temporal proximity of cues presented 
during sleep may have engendered some interference. Further studies 
are needed to explore such memory interactions, such as undertaken by 
Antony et al. (2018). 

It may seem contradictory that TMR for some artists led to poorer 
recognition without a commensurate improvement in generalization. 
Our initial hypothesis that generalization would improve with TMR at 
the cost of lost specificity was only partially supported. Why wasn’t a 
differential improvement in generalization for cued artists observed? 
Notably, previous TMR studies with spatial tasks generally show no 
absolute improvement above pre-sleep levels for cued items (Cairney 
et al., 2016; Creery et al., 2015; Rudoy et al., 2009; van Dongen et al., 
2012). Rather, these studies typically show that cuing protects memories 
from forgetting. Because generalization performance didn’t decrease 
after the nap for either cued or uncued artists, perhaps there was no 
opportunity for TMR to forestall forgetting. Changing the task by adding 
interference before test would increase difficulty and could have 
revealed an effect of TMR, as shown in prior research on sleep consoli-
dation (Petzka et al., 2021). Future work should explore increasing the 
demands of the task, as well as comparing against a wake control group 
or other strategies to try to determine whether this form of generaliza-
tion is sleep-dependent. 

There have been other studies conducted using TMR to test gener-
alization, although not with paradigms involving learning the artistic 
styles of different artists. Groch et al. (2016) studied a different form of 
generalization. They showed participants photos that could be inter-
preted either negatively or positively, and for each photo a spoken word 
was to be learned that disambiguated the situation depicted. Then, 
during overnight sleep, half of the words were presented. TMR improved 
the ability to recall the associated word when viewing the corresponding 
photo the next day, thus demonstrating a memory benefit. Generaliza-
tion was assessed using new photos that each mapped onto one of the 
learned photos. The new photos were also ambiguous with regard to 

valence. TMR biased ratings of these new photos in the direction cor-
responding to that of the word that had been associated with the learned 
photo (i.e., either positive or negative). The results thus suggest that 
memory reactivation during sleep-influenced generalization, perhaps 
through a spreading activation mechanism, although the results could 
also be explained by an indirect effect of retrieving the associated photo 
and then the associated word. 

Abstraction of statistical regularities such as in a statistical learning 
task has sometimes been considered a form of generalization. One 
experiment conducted by Hennies and colleagues used an auditory 
statistical learning task to test whether memory reactivation led to an 
improvement in this form of abstraction (2017). Participants who 
received TMR during sleep performed worse than both the uncued sleep 
group and the wake group, perhaps supporting the conclusion that sleep 
negatively impacts generalization. However, meta-analyses on sleep 
studies that rely on extracting hidden statistical regularities show that 
results can vary widely based on the cognitive test used (Lerner & Gluck, 
2019). We argue that identifying new paintings by a known artist does 
not represent the same kind of generalization as abstracting a rule such 
as in statistical learning. Indeed, with specific regard to Hennies’ study, 
prior work shows the method of continuous cueing might have harmed 
the memory reactivation process. Specifically, Schreiner et al. (2015) 
demonstrated that immediate auditory stimulation after a cue abolishes 
the beneficial effect of TMR; this sort of disruption may have also been 
operative for Hennies et al. (2017). 

Lexical competition, where a newly learned word competes with 
existing vocabulary, provides another experimental paradigm that 
touches on generalization. Slower reaction times are found to reflect 
greater competition between a newly learned word and its phonological 
neighbors, a sign of more lexical integration. Prior work has shown that 
lexical integration is impacted by sleep (Tamminen et al., 2010). In one 
experiment, researchers hypothesized that TMR would promote lexical 
integration of studied nonwords (Tamminen et al., 2017). Although they 
did not find a TMR effect on responses overall, they did find that TMR 
followed by a period of REM sleep improved integration. That is, par-
ticipants high in REM sleep were preferentially slowed for cued 
compared to uncued words, presumably because the cued words were 
more integrated and therefore more confusable, producing slower 
judgments. The authors argued that activation of words cued during 
SWS were integrated during subsequent REM sleep. Together, these two 
studies hint that TMR may affect memory for multiple sorts of gener-
alized knowledge. 

In sum, the results obtained here expand knowledge of how memory 
reactivation during sleep may influence consolidation. Performance on 
the specificity test attests to the efficacy of the sounds presented during 
slow-wave sleep. Instead of producing no change in performance, 
sounds corresponding to specific artists were apparently effective in 
reactivating memories for individual paintings by those artists. Recog-
nition memory, as assessed in a six-choice recognition test, declined for 
those specific paintings. Our explanation appeals to a natural tradeoff 
between memory specificity and generalization. In keeping with a few 
prior studies, we speculate that reactivation during sleep contributes to 
generalization, which in this paradigm entails dropping some of the 
details of a painting, such as where it has been cropped, in order to 
emphasize similarities among all the paintings by the same artist. 
Indeed, participants often made errors by selecting one of the other 
slides from the correct painting (perhaps reflecting a sort of boundary 
extension). Such a memory decline could promote generalization. 
Although the generalization test did not produce evidence to support 
this hypothesis, it may have been insufficiently sensitive to show an 
effect of memory reactivation. Future studies would benefit from a more 
sensitive test of generalization, perhaps with more artists to yield su-
perior sensitivity to small changes. Alternatively, additional memory 
reactivation over many nights may produce larger effects. Indeed, 
generalization learning outside the lab often requires extended periods 
of time, not merely one short session. We conclude that memory 
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reactivation during sleep likely contributes to memory transformation as 
well as to preserving accuracy for select memories. 
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