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Prior work has shown that the brain represents memories within
a cognitive map that supports inference about connections be-
tween individual related events. Real-world adaptive behavior is also
supported by recognizing common structure among numerous dis-
tinct contexts; for example, based on prior experience with restau-
rants, when visiting a new restaurant one can expect to first get a
table, then order, eat, and finally pay the bill. We used a neuro-
computational approach to examine how the brain extracts and uses
abstract representations of common structure to support novel
decisions. Participants learned image pairs (AB, BC) drawn from
distinct triads (ABC) that shared the same internal structure and were
then tested on their ability to infer indirect (AC) associations. We
found that hippocampal and frontoparietal regions formed abstract
representations that coded cross-triad relationships with a common
geometric structure. Critically, such common representational geom-
etries were formed despite the lack of explicit reinforcement to do so.
Furthermore, we found that representations in parahippocampal
cortex are hierarchical, reflecting both cross-triad relationships and
distinctions between triads. We propose that representations with
common geometric structure provide a vector space that codes
inferred item relationships with a direction vector that is consistent
across triads, thus supporting faster inference. Using computational
modeling of response time data, we found evidence for dissociable
vector-based retrieval and pattern-completion processes that contrib-
ute to successful inference. Moreover, we found evidence that these
processes are mediated by distinct regions, with pattern completion
supported by hippocampus and vector-based retrieval supported by
parahippocampal cortex and lateral parietal cortex.
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Understanding of real-world experiences is often supported
by abstract knowledge. For instance, when going to a res-

taurant, you might first have an appetizer, then a main course,
and finally dessert. Through similar experiences in multiple res-
taurants, you can abstract knowledge about the general sequence of
events to expect. Your general knowledge about restaurants may
then help you remember visits to specific restaurants and infer what
to expect during upcoming visits. For example, to remember what
you previously ordered for dessert at a specific restaurant, your
general knowledge will guide you to focus on what occurred toward
the end of dinner at that restaurant. Similarly, when visiting a
French restaurant, you might predict which dessert you will have
before seeing a menu based on past visits to French restaurants.
While research has provided insight into how memories of indi-
vidual events are formed, less is known about how abstract knowl-
edge of common event structure is represented in the brain or how
such knowledge supports memory-based inference. Here, we test
whether hippocampus and prefrontal cortex represent similar
events in a way that encodes common features with a consistent
geometry to support efficient memory-based decisions (1).

Recent work shows that hippocampus and prefrontal cortex form
representations, often referred to as cognitive maps, of both spatial
and nonspatial relationships within a given context (2–6). These
cognitive maps are thought to aid inference of relationships that
have not been observed directly (2). Prior studies have found evi-
dence that representational overlap, or memory integration (7), in
hippocampus and medial prefrontal cortex (MPFC) mediates in-
ference behavior (8–10). While studies of memory integration have
focused on how pairs of related events become integrated in
memory (11, 12), recent work in monkeys suggests that cognitive
maps may also represent multiple task-relevant dimensions simul-
taneously (1). Such work suggests that hippocampus and prefrontal
cortex may represent task features in a low-dimensional format,
wherein individual task elements are represented with a common
geometry that is consistent regardless of how other task features
vary. For example, in monkeys, the direction between low- and high-
reward value trials in hippocampal representational space is the
same regardless of the specific stimulus being presented (1). This
consistent vector relationship across trials has been proposed to be a
form of abstraction—learned through feedback—that optimizes
generalization to new events. However, real-world learning is often
unsupervised and requires recognizing both specific and abstract
properties, for example learning about a specific restaurant while
also learning the series of events restaurants share.
To test how the brain represents the abstract, common

structure shared across events, we examined data from a study in
which participants learned pairs of items (13); each pair (AB,
BC) was drawn from a triad of three items (ABC), and there
were 12 distinct triads in the task (Fig. 1A). Within each triad,
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the AB pair was always presented first and later followed by the
BC pair. While participants were only instructed to learn about
the individual pairs, previous analysis of this study demonstrated
that indirectly related items (A and C) that share a common as-
sociate (B) show increased pattern similarity in hippocampus and
prefrontal cortex after learning, suggesting that they have become
integrated in memory (11). Memory integration has been pro-
posed to facilitate inference about indirectly associated items (2).
However, while it is possible to learn each triad separately, the
triads share a common structure comprising A, B, and C items; the
common structure among triads may promote formation of neural
codes, particularly in hippocampus and prefrontal cortex, that
represent all of the triad relationships with a common geometry
(Fig. 1B). In such a common geometric representation, there
would be a shared direction vector between indirectly associated
items (A and C), regardless of their specific triad membership. To
illustrate how common geometric representations may be formed
without explicit feedback, we show that a simple back-propagation
network learns to represent an abstract direction vector across
triads while maintaining distinctions between individual triads in a
single hierarchical representation (see Fig. 4).
We further tested how a common geometric representation

across triads supports efficient inference behavior. After learn-
ing, participants completed a surprise inference test of the as-
sociations between indirectly related A and C items (Fig. 1C).
They were presented with a C item as a cue and had to select the
corresponding A item. If the indirect association between A and
C is coded with a consistent direction vector across triads, then
this vector could be used to quickly infer unobserved relation-
ships among events. In the case of an AC inference, by adding
the C-to-A direction vector to a given C item cue, the correct A
item could be predicted quickly from the common geometry
(Fig. 1D). Such vector-based inference derived from a common
neural geometry contrasts with a more effortful process, whereby
multiple individual associations (i.e., A→B, B→C) are iteratively
retrieved via pattern completion before an inference judgment

can be made (14, 15). We therefore predicted that individuals
who formed common geometric relationships among the triads
would be faster at inference than participants with less geo-
metrically aligned representations of the individual triad rela-
tionships. Furthermore, we used computational modeling to
isolate how the distinct mechanisms of pattern completion and
vector-based inference based on shared geometry contribute to
inference.

Results
Medial Temporal Lobe and Frontoparietal Cortex Represent the
Common Structure across Events. We predicted that learning of
the initial (AB) and overlapping (BC) pairs from each triad
would result in the formation of neural geometries reflecting the
common structure of relationships across triads (Fig. 2A). We
focused on neural representations of the A and C items, as we
hypothesized that representation of common structure would be
particularly important for inferring the indirect relationships
among items that were never seen together directly. We predicted
that the common neural geometry would represent the grouping
of items within a triad, with a consistent vector direction for in-
directly associated (A and C) items across triads (Fig. 2A).
After the study phase, participants viewed each item in isolation,

allowing us to measure the neural activation pattern associated with
each item. We tested for representation of a common geometry
across triads using a cross-validation procedure. On each cross-
validation fold, we estimated the average direction vector between
A and C across a set of triads (Fig. 2B) and used this vector to
predict the relation between A and C items in a left-out triad (Fig.
2C). We added the A→C vector to the left-out A item pattern to
form a prediction of what the activation pattern should be for the
corresponding C item. We then evaluated this prediction by cal-
culating the Euclidean distance between the predicted pattern and
the pattern observed for that item; if there were a common ge-
ometry across triads, this distance error would be small relative to
chance (estimated using a permutation test).

A

B C D

Fig. 1. (A) Participants learned associations between pairs of objects during the study phase. Unbeknownst to participants, objects were organized into
triads of A, B, and C items. Within each triad of objects, an initial pair (AB) was learned first, followed by an overlapping (BC) pair. The left/right position of
objects on the screen was randomized across presentations. Triads were learned in either a blocked order, for which all AB pairs were learned first followed by
the BC pairs, or an intermixed condition, wherein AB and BC pairs were intermixed. Before and after learning, participants viewed each object in isolation,
allowing us to measure how neural object representations changed as a result of learning. (B) We hypothesized that learning would cause items to become
organized within a common cross-triad geometry, with a consistent direction between A and C items for all triads. (C) After scanning, participants performed
an inference test; they were cued with a C item and asked to choose the A item that shared an indirect relationship with the cue. (D) We predicted that a
common neural geometry across triads would support a vector-based inference process. The cue item representation could be combined with the direction
vector representing the relevant relationship (here, C to A) to target the correct item in memory.
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Consistent with our predictions, left anterior hippocampus
(Fig. 3A) and right MPFC (Fig. 3B) exhibited representational
geometries that were common across triads. A whole-brain
analysis further revealed common geometry in left lateral pari-
etal cortex (LPC), left parahippocampal cortex (PHC), bilateral
frontopolar cortex, and right dorsolateral prefrontal cortex
(DLPFC; Fig. 3C). The LPC cluster extended into medial areas
but was primarily located on the lateral surface. Critically, these
regions represented the common structure across triads even
though participants were not instructed to learn the abstract
properties of the task and received no reinforcement during
learning that would explicitly cue them to the abstract task
properties.
While we found evidence that medial temporal and frontoparietal

areas formed a common geometry across triads, hierarchical rep-
resentations that code both abstract commonalities among events

and distinctions between them might be particularly efficient at
supporting memory-based decisions. Therefore, we tested whether
regions exhibiting cross-triad organization also distinguished be-
tween individual triads. We used the same cross-validation statistic
as before but compared the observed prediction error to a permu-
tation distribution estimated by scrambling items across triad to
obtain a z-statistic for each participant and region. We found that
PHC representations significantly distinguished between individual
triads [tð25Þ= 2.94, P= 0.017, false discovery rate Benjamini–
Hochberg (FDR-BH)–corrected one-sided test], while the other
regions did not [tð25Þ< 2.08, P> 0.05, FDR-BH–corrected one-
sided test]. However, we did not observe a significant difference in
triad separation between PHC and the other regions (P> 0.05,
FDR-BH–corrected) and therefore do not conclude that triad sep-
aration is necessarily selective to PHC.

A Neural Network Model of Learning Predicts Formation of a
Hierarchical Task Representation. After learning, we observed ab-
stract representations of common event structure and hierarchical
representations that represented both event commonalities and
differences. To examine how hierarchical representations might
emerge during learning, we trained a three-layer neural network
model on our task (cf. ref. 1). We trained the network to associate
each item with both the specific item(s) to which it was paired and
with a representation of its abstract identity within a triad (i.e.,
whether each item was an A, B, or C item; Fig. 4A and SI Ap-
pendix, Fig. S2 A–C). After training, presentation of individual
items (similar to the poststudy scans) elicited hierarchical patterns
in the hidden layer of the network that represented the full
structure of the task (Fig. 4B and SI Appendix, Fig. S2D–F). These
results suggest that a hierarchical representation of the task can be
learned without explicit feedback. Abstract representations of
common triad structure (as we observed in frontoparietal cortex
and hippocampus) may guide formation of hierarchical repre-
sentations that reflect commonalities among multiple events while
maintaining distinctions between individual episodes (as we ob-
served in PHC).

Common Geometric Representations in Hippocampus and Parietal
Cortex Predict Faster Inference. We hypothesized that common
geometric relationships would facilitate performance on the AC
inference test. Participants had near-ceiling accuracy on the AC
inference test and the direct AB and BC tests (SI Appendix, Fig.
S1A). Thus, we focused on individual differences in response time
for correct trials on the inference test (SI Appendix, Fig. S1B).
Response times were significantly slower on the inference test
compared to the direct tests [tð25Þ= 6.63, P= 2.24× 10−8]. During
the study phase, triads were learned in either a blocked or inter-
mixed schedule (Materials and Methods). Response times did not
differ between schedules for either the direct [tð25Þ= 1.97,
P= 0.055] or inference [tð25Þ= 0.60, P= 0.56] tests.
For each region exhibiting a common geometry across triads, we

calculated an organization score for each participant. Organiza-
tion was measured as the z-statistic of prediction accuracy based
on common geometry, relative to chance. For the triads learned in
each schedule (blocked or intermixed), we visualized individual
differences in neural organization using multidimensional scaling
of average item patterns. Fig. 5 A and B shows examples for two
participants, illustrating hippocampus representations for items
learned through the intermixed schedule. Fig. 5C shows an ex-
ample, taken from the intermixed schedule of one participant, of
PHC patterns exhibiting both cross-triad geometric structure and
separation between different triads. The degree of cross-triad
organization did not differ between the blocked and intermixed
learning schedules in any region (P> 0.05, FDR-BH–corrected).
In PHC, we observed no difference in triad separation between
schedules [tð25Þ= 0.19, P= 0.85]. Therefore, we averaged across
learning schedule for all subsequent analyses.

A

B

C

Fig. 2. (A) For a given brain region, we measured activation estimates for
each voxel to obtain an activation vector for each item. We tested for a
common neural geometry across triads by using the patterns from one triad
to predict the pattern associated with a different triad (dotted circle). If the
triads share consistent representational vectors between the elements, then
the difference between the predicted and observed patterns for the left-out
item (red arrow) should be small. (B) We first estimated the average vector
from A to C by subtracting the A pattern from the C pattern for all triads in a
training set and averaging the difference vectors. (C) We then added the es-
timated A→C vector to the A item of a left-out triad, forming a prediction of
what the pattern of activation should be for the corresponding C item. Finally,
we evaluated the prediction by calculating the Euclidean distance between the
prediction and the activation pattern observed for that item. We compared
distance error to a chance distribution estimated by randomly swapping A and
C items within each triad.
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We hypothesized that participants who exhibited greater
geometric organization after learning (e.g., Fig. 5A) would make
faster inference decisions. To test this hypothesis, we examined
the relationship between the organization z-statistic for each
participant after learning and their subsequent mean response
time on correct inference trials (Fig. 5 D and E). In hippocampus
and LPC, we found that increased geometric organization after
learning predicted faster inference response times, after con-
trolling for individual differences in response time on the direct
tests (hippocampus: r=−0.52, P= 0.018; LPC: r=−0.42, P= 0.046;
Spearman correlation, FDR–corrected one-sided permutation
test). There was no significant correlation for any of the other re-
gions (P> 0.05, FDR–corrected one-sided permutation test). We
also examined whether triad separation in PHC was related to
individual differences in response time. There was a trend toward
a negative relationship (r=−0.327, P= 0.052, Spearman correla-
tion, one-sided permutation test). Our results suggest that for-
mation of common geometric structures within hippocampus and
LPC may facilitate inference about object relationships that have
not been directly observed.

Hippocampus, PHC, and Parietal Cortex Support Dissociable Retrieval
Processes. We hypothesized that representation of common geo-
metric structure may facilitate faster inference by supporting tar-
geted retrieval of memories, through use of the common vector
coding A→C direction across triads. The common geometry
among indirectly related items in each triad could be used to
speed inference decisions by targeting the position of the probed
item relative to the test cue in the geometric structure. For ex-
ample, when presented with a retrieval cue such as item C1 (the C
item from triad 1) and asked to retrieve the corresponding A item
(A1), common geometry could guide targeted retrieval of the in-
directly related item, allowing for more efficient inference (Fig.
6A). In contrast, previous work suggests that participants could
also perform inference through an iterative retrieval process,
whereby a cue (e.g., C1) triggers pattern completion to the asso-
ciated pair (B1C1), and then the retrieved intermediate item (B1)
triggers pattern completion to its other associated pair (A1B1; Fig.
6A) (14). However, this process would require multiple retrievals,
and therefore inference based on this process would be slower
than pattern completion of directly learned associations.
To better understand how common geometric representation

relates to response time, we developed a formal model of how
retrieval processes may contribute to both memory for direct

associations and inference. Our model hypothesizes that there are
two distinct processes that may contribute to memory and in-
ference in our task: pattern completion, which is fast for retrieval
of direct associations but slower for inference of indirect associ-
ations (i.e., variable speed), and a vector-based retrieval process
leveraging the shared geometry across triads that takes the same
amount of time regardless of whether a direct or indirect associ-
ation is being retrieved (i.e., fixed speed; Fig. 6A). We used the
linear ballistic accumulator (LBA) model of decision making (16)
to model response times produced by the combination of the two
hypothesized processes to the direct and inference tests (Fig. 6B).
Critically, we found that our proposed dual-process model pre-
dicts distinct patterns of response time data when compared to a
single-process model and that the dual-process model provides a
better account of individual differences in response time (SI Ap-
pendix, Fig. S3). We used the dual-process model to estimate in-
dividual differences in the speed of the pattern completion and
vector-based retrieval processes for the direct and inference tests.
We used Bayesian inference to estimate model parameters for
both the variable-speed process (with base speed v1) and fixed-
speed process (with speed v2) for each participant, based on their
response time distributions and accuracy on the direct and in-
ference tests (SI Appendix, Figs. S4–S8).
To test whether neural geometry in hippocampus, PHC, and LPC

was related to the pattern completion or vector-based retrieval
processes, we examined whether the speed parameter estimates v1
and v2 were related to neural organization in each region. We
predicted that participants with more coherent geometries would
demonstrate faster drift rates in either v1 or v2, both of which in-
fluence inference response times according to the model. Using a
regression model including v1 and v2 to predict organization, we
found that v1 (variable speed) explained unique variance in hip-
pocampal geometric organization [tð23Þ= 1.83, P= 0.040, one-sided
test] but v2 (fixed speed) did not [tð23Þ= 0.48, P= 0.32, one-sided
test]. Conversely, v2 explained unique variance in LPC geometric
organization [tð23Þ= 2.10, P= 0.024, one-sided test] but v1 did not
[tð23Þ= 0.26, P= 0.80]. Next, we examined how both common ge-
ometry across triads and triad separation in PHC relate to the v1
and v2 model parameters. We found that the v2 parameter
explained unique variance in both aspects of PHC organization
after controlling for v1 [organization: tð23Þ= 1.76, P= 0.046; triad
separation: tð23Þ= 2.90, P= 0.004, one-sided tests], but v1 did not
explain unique variance [organization: tð23Þ=−0.74, P= 0.77, triad
separation: tð23Þ=−0.32, P= 0.63, one-sided tests], suggesting that
hierarchical representations in PHC may support vector-based re-
trieval. Furthermore, we found that common geometry across triads
predicted decision speed even when controlling for the degree to
which neural representations were clustered by type (e.g., two A
items being more similar than an A item and a C item; SI Appendix,
Fig. S9), suggesting that common geometry is specifically predictive
of inference performance.
Our results provide evidence that common geometric structure in

hippocampus is related to efficient pattern completion, while geo-
metric structure in LPC and hierarchical representations in PHC
support vector-based retrieval. To test the hypothesis that LPC and
PHC support a distinct process from hippocampus, we examined
whether organization in each region explains unique variance in the
model parameters. Hippocampal geometric organization explained
unique variance in the v1 parameter (residualized with respect to v2)
after controlling for LPC and PHC geometric organization and
PHC triad separation [tð21Þ= 2.02, P= 0.029, one-sided test]. We
also found that the signals related to v2 parameter residuals (LPC
and PHC geometric organization and PHC triad separation)
explained unique variance after controlling for hippocampal geo-
metric organization [Fð3,   21Þ= 4.12, P= 0.0191]. Our results thus
provide evidence of distinct hippocampal and LPC/PHC contribu-
tions to memory retrieval and inference.

A B

C

Fig. 3. (A) We found evidence of a common neural geometry across triads
in anterior hippocampus. Results were cluster-corrected within hippocam-
pus. (B) We also found evidence of common neural geometry within MPFC
(cluster corrected within MPFC). (C) Whole-brain analysis revealed additional
clusters in bilateral frontopolar cortex, left PHC, right DLPFC, and LPC.
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Discussion
We show that hippocampus, PHC, and frontoparietal regions
represent common structure across events. Activation patterns in
these regions reflected a common task geometry, wherein the re-
lationships between elements of individual triads were represented
with common directions across triads. This abstract representation

emerged even though participants were only instructed to attend to
and learn individual pairs. Furthermore, common geometry in
hippocampus, PHC, and LPC predicted faster inference decisions
about indirectly related A and C items, even after controlling for
clustering of items by type (e.g., two A items being more similar
than an A item and a C item). During the inference test, partici-
pants were given a C item and asked to select the corresponding A
associate. Critically, both choices were associated with the same
element within each triad (i.e., both were A items); therefore,
making a correct response required retrieving a specific A–C as-
sociation. Thus, our results provide evidence that abstract repre-
sentations of common structure facilitate inference about specific
associations.
Previous computational models of associative memory have pro-

posed that pattern completion may support inference about over-
lapping events (17, 18); however, these models do not address how
representations of common event structure might further guide in-
ference. We hypothesized that abstract representations may support
a vector-based retrieval process that allows efficient retrieval of in-
directly associated items. To test this hypothesis, we developed a
formal model of memory-based decisions in which responses may be
driven by either pattern completion to directly experienced event
relationships or vector-based retrieval of both directly experienced
and inferred relationships. We found that a dual-process model, in
which both pattern completion and vector-based retrieval processes
contribute to inference, explained individual differences in response
times more accurately than a simpler model based on pattern com-
pletion alone. Furthermore, we found evidence of a dissociation
between the roles of different regions: Common geometry in

A B

Fig. 4. (A) We simulated learning in our task using a simple three-layer
network. The network was trained to take item pairs as input and pro-
duce an output of that same item pair and the abstract identity of an item
within the triad (i.e., either the A, B, or C element). Example input and target
output patterns are shown for one simulated pair, A1B1. The network learns
to associate each item with both the other item in the pair and its abstract
identity in the triad. (B) After training, we simulated the postlearning item
display task by presenting individual items to the network. We then used
multidimensional scaling to characterize representations of A and C items in
the hidden layer. Item representations reflected both abstract item identity
(shown as different colors) and triad (shown as different symbols).

A

D

B C

E

Fig. 5. (A) Average hippocampus (HPC) item patterns in a participant with relatively strong cross-triad geometric organization (as indicated by the z-statistic
of organization relative to chance). Multidimensional scaling (MDS) was used to reduce the dimensionality of mean hippocampal activity patterns for vi-
sualization. Colors indicate within-triad position (A or C), and symbols indicate which triad each item belonged to. Note that A and C items can be cleanly
divided by drawing a line. The plot shows A and C item patterns for the six triads learned in the intermixed condition; similar organization was observed in the
blocked condition. (B) MDS plot of mean hippocampus activation patterns for items learned in the intermixed condition, for a participant with less-coherent
cross-triad organization. (C) MDS plot of mean PHC activation patterns for items learned in the intermixed condition, for a participant with both high cross-
triad organization and high triad separation. (D) The degree of cross-triad organization in hippocampus (relative to organization expected by chance) was
predictive of faster response times on the later surprise inference test, after controlling for direct test response time. Shaded area is a 95% confidence interval
based on a bootstrap procedure. (E) Cross-triad organization in LPC also predicted individual differences in response time.
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hippocampus predicted the speed of the pattern completion process,
while PHC and LPC common geometries predicted the speed of the
vector-based retrieval process. In PHC, separation between triads
also predicted the speed of vector-based retrieval. This finding sug-
gests that hierarchical representations in PHC may help connect
abstract representation of commonalities with the specific features
of events.
Together with MPFC and LPC, PHC is a component of a

hypothesized posterior medial network that is proposed to rep-
resent abstract structure, for example the general sequence of
events that occurs when one visits a restaurant (19, 20). Here, we
provide evidence for this theoretical proposition, showing that
abstract information about commonalities among events is rep-
resented in posterior medial areas in the form of a consistent
neural geometry. The posterior medial network is functionally
connected with hippocampus (19, 21), which has also been im-
plicated in representing abstract knowledge of task-relevant
features (2–4). Here, we found that anterior hippocampus rep-
resentations not only link pairs of related events (11, 22) but
further abstract commonalities across a number of events that
share a common structure. Moreover, we found that prefrontal
areas, including MPFC, DLPFC, and frontopolar cortex, formed
common geometric representations of task structure after learning.

Recent evidence suggests that MPFC performs dimensionality re-
duction (23), a mechanism that may facilitate formation of abstract
representations (1). DLPFC and frontopolar cortex have been pro-
posed to support learning about inferred task structure in the context
of reinforcement learning paradigms that require learning of complex
rules through feedback (24–28). Together with such work, the present
findings suggest that MPFC, DLPFC, and frontopolar cortex may
be involved in inferring relevant features of the task and forming
low-dimensional abstract representations.
Our findings parallel recent primate work showing that ab-

stract neural geometries are formed in hippocampus and DLPFC
during reinforcement learning (1). We extend those findings by
demonstrating that abstract neural representations are formed in
the human brain in the absence of feedback. Furthermore, we
find that in addition to hippocampus and DLPFC, LPC and PHC
also represent abstract commonalities. In the primate study,
abstract neural representations reflected the current task con-
text, which monkeys learned by monitoring the temporal regu-
larities of reward outcomes. In the current study, we find that
medial temporal lobe and frontoparietal regions distinguish be-
tween A and C items, which only differ from each other in their
temporal regularities. It is notable that similar common geom-
etries were observed in the blocked condition, in which all AB

A

C D E F

B
A

ct
iv

at
io

n

Fig. 6. (A) We hypothesized that retrieval during both the direct memory and inference tests could be accomplished either through pattern completion of
individual associations or through a vector-based retrieval process guided by common geometric representation across triads. We hypothesized that pattern
completion would be fast but would take longer than the vector-based retrieval process for the inference test as more retrieval steps (depicted by individual
arrows) are necessary to infer that A and C are related. In contrast, common representational geometry could be used to guide vector-based retrieval of a
specific memory. The common geometry could be used to calculate a vector (dotted arrow) pointing to where the targeted memory should be in the rep-
resentation (circle), thus providing a means to infer indirect relationships. This vector-based retrieval approach does not require multiple retrieval steps and
may thus have an advantage over the pattern-completion process for the inference test in particular. (B) We simulated the retrieval process using the LBA
model of response time. Different retrieval processes were simulated as trajectories from some starting point to a threshold. Response time is modeled as the
time that the first retrieval process hits the threshold. The model predicts that the pattern completion process will finish first more often on direct test trials,
but that the vector-based retrieval process will win more often on inference trials. We used the model to estimate the speed of the variable-speed pattern
completion ðv1Þ and fixed-speed vector-based retrieval ðv2Þ processes for each participant, based on their response times on the direct and inference tests. (C)
Hippocampus (HPC) geometric representation tracked individual differences in the speed of the pattern completion process (v1 parameter after controlling
for v2). Shaded area is a 95% confidence interval based on a bootstrap procedure. (D) LPC geometric organization tracked individual differences in the speed
of the vector-based retrieval process (v2 parameter after controlling for v1). (E and F) In PHC, both common geometry across triads and separation between
triads were related to the fixed-speed process (v2 parameter after controlling for v1).
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pairs were learned before all BC pairs, and in the intermixed
condition, in which AB and BC pairs were intermixed. The lack
of differences in neural geometries between these very different
learning schedules suggests that the abstract representations
reflect the specific temporal regularities of the task (i.e., that AB
pairs were always presented before their corresponding BC pairs
across both conditions) rather than broad differences in tem-
poral context, which are present only in the blocked condition.
Our findings thus complement prior work showing that abstract
temporal statistics are reflected in hippocampal and prefrontal
responses (29, 30) and build upon that work by showing how
representation of abstract temporal properties in medial tem-
poral and parietal regions promote inference.
Our model-based analyses suggest that organization in PHC

and LPC guides a vector-based retrieval process, whereby inferred
associations are accessed directly rather than through iterative
retrieval of individual pairings. While LPC activity tracks suc-
cessful retrieval of episodic memories (31), its specific role in
memory processing is controversial (32). For instance, LPC lesions
do not substantially impact memory retrieval (33). However, sev-
eral theories suggest that LPC contributes to memory by directing
attention to retrieved memory contents to guide decision making
(34). Our results provide a more mechanistic explanation of how
LPC may control movement between memories in an efficient
way; given a relationship, encoded in a direction vector through a
learned neural geometry, and a cue, encoded as a position within
the common geometric space, LPC may compute a new position
within the learned geometry to target specific memories. In other
words, LPC may support predictive inference by navigating
through the shared geometric structure. Our findings thus suggest
that LPC may be more important for navigating relational maps of
memories than for retrieving details about individual memories.
LPC has been implicated in transitive reasoning (35), mathemat-
ical operations such as approximate addition (36), and numerical
inductive inference (37), raising the possibility that it may play a
domain-general role in vector-based navigation through different
types of cognitive maps.
LPC and PHC are highly interconnected regions (38), suggesting

they may work together to guide vector-based retrieval using both
abstract and specific features of events in memory. The present
findings indicate that PHC simultaneously represents commonali-
ties among and distinctions between triads. Through interactions
with LPC, the multidimensional geometry in PHC may allow for
translation between the abstract and specific features to promote
inference. PHC has been implicated in processing of spatial stimuli
(39–41) and representing geometric features of spatial layouts such
as distance and angle (42, 43). While PHC has been proposed to
have an important role in spatial cognition, recent work has dem-
onstrated that nonspatial memories may become organized within
cognitive maps with similar properties to spatial cognitive maps (2–4,
44, 45). Our results suggest that PHC may play a domain-general
role in representing abstract task geometries through formation of
multidimensional cognitive maps.
While LPC and PHC representations predicted individual dif-

ferences in the vector-based retrieval process, hippocampus tracked
a pattern-completion process that is slower for inference of indirect
associations than for retrieval of directly learned associations. Re-
cent evidence suggests that hippocampus may support inference
through an iterative process of retrieving individual memories (14,
15, 46). For simplicity, in our model, we assumed that the pattern
completion process is always an iterative process of retrieving sep-
arate memories of the AB and BC pairs. However, recent studies
have found evidence that related events may become integrated in
overlapping memory traces during encoding, facilitating efficient
flexible retrieval (8–10, 47). It is difficult to examine the contribu-
tion of memory integration in this study, however, as a prior in-
vestigation of this dataset demonstrated that memory integration
did not occur consistently across the blocked and intermixed

conditions (7). However, the present findings indicate that hippo-
campal abstraction of common task geometries may be more robust
than integration of elements of individual pairs. The fact that
common geometric coding was localized to anterior hippocampus is
consistent with leading theories (48) which propose that anterior
hippocampal coding emphasizes commonalities among rather
than differences between events.
In conclusion, we find evidence that individual memories are

organized into a common geometric representation in hippo-
campus, PHC, LPC, and prefrontal cortex that reflects the ab-
stract structure shared across events, even in the absence of
explicit task demands to attend to this structure. Such organized
representational geometries further predict individual differ-
ences in the speed of flexible retrieval. We propose that neural
representations with common geometric structure may provide
an efficient way of accessing memories that are not easily ac-
cessible via pattern-completion mechanisms, while also making it
possible to infer associations between events that have not been
directly observed. Importantly, representations with consistent
geometric structure are efficient at coding multiple dimensions
(1), making them well-suited for learning complex hierarchical
structures that reflect abstract relationships between contexts
with similar structure. These mechanisms may be critical for
building mental models of real-world situations for which
structure is not directly learned but instead must be inferred
based on limited experience.

Materials and Methods
Participants and Procedures. Data from the study were previously reported in
ref. 11. Data from 26 participants were included in all analyses (14 women;
ages 18 to 27 y; 21.6± 0.5 y). Stimuli consisted of 36 novel objects (11, 49)
that were arranged into 12 ABC triads. Triads were presented to participants
as overlapping AB and BC pairs; each pair was presented 12 times. Triads were
divided into two learning conditions. In the blocked learning condition, all AB
pair presentations occurred before the presentation of any BC pairs. In the
intermixed learning condition, AB and BC pairs were presented in alternation.
The left/right position of stimuli on the screen was randomized across pre-
sentations. Participants were not made aware of the overlap between AB and
BC pairs before beginning the experiment. Participants were exposed to single
items both immediately before and following study during functional MRI
scanning while performing an orthogonal change-detection task (Fig. 1A). See
SI Appendix for details of scanning parameters and preprocessing. In each of
the four prestudy runs and four poststudy runs, each of the 36 items was
presented in isolation twice. Following scanning, it was explained to partici-
pants that A and C items could be indirectly related through their common
association with a single item, B. Participants were then tested on their
memory for indirectly (AC) and directly (AB, BC) related associations (Fig. 1D).
See SI Appendix for full task details.

Measuring Neural Geometry. Patterns of activation associated with individual
items were estimated under the assumptions of the general linear model
using a least squares–separate approach (50). To test whether there was a
consistent A-to-C direction across triads, we used a cross-validation pro-
cedure that estimated the average direction vector from A to C on one set of
triads and evaluated that vector on a left-out triad. On each fold of the
cross-validation, we first estimated the average vector between A and C
items for all triads except one. We then added this vector to the A item of a
left-out triad to obtain a prediction of what the pattern of activation should
be for the corresponding C item and tested whether prediction accuracy was
greater than expected due to chance. We calculated an organization score z-
statistic by comparing the observed prediction accuracy with a chance dis-
tribution determined by randomly permuting item type (A vs. C) within each
triad separately.

We quantified representation in searchlight spheres (radius three voxels)
across the brain by calculating cross-triad prediction accuracy separately for
each learning condition, averaging across conditions, and calculating a
z-statistic of average prediction accuracy relative to chance. Participant
z-statistic images were transformed to a group template using ANTs. Group
results were cluster-correctedwithin hippocampus andMPFC a priori regions of
interest (ROIs) and at the whole-brain level with a familywise alpha of 0.05.
Group-level clusters were reverse-normalized to the space of individual par-
ticipants and organization z-statistics were calculated for each participant and

29344 | www.pnas.org/cgi/doi/10.1073/pnas.1912338117 Morton et al.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
N

IV
E

R
SI

T
Y

 O
F 

T
E

X
A

S 
A

T
 A

U
ST

IN
 S

E
R

 &
 E

L
E

C
 R

E
S 

D
E

PT
 P

C
L

 2
 3

02
 o

n 
A

ug
us

t 3
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

12
8.

62
.4

8.
62

.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912338117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1912338117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1912338117


ROI. To measure between-triad separation, we used the same prediction ac-
curacy statistic as in theoriginal test for cross-triadorganizationbut compared it
to a chance distribution determined by randomly permuting C items across
triads while leaving A items fixed. See SI Appendix for further details.

Network Model of Learning. To simulate the study phase, we used a three-
layer back-propagation network (Fig. 4A). For each pair, we trained the net-
work to take the items as input (e.g., A1 and B1, the A and B items from triad 1)
and output both the same items (A1 and B1) and their corresponding item
types (e.g., A and B; see SI Appendix, Fig. S2 B and C). We simulated learning of
six triads (as in each of the individual learning conditions) by presenting AB
and BC pairs to the network. After training, we simulated the postlearning
display task by presenting individual items to the network and recording the
state of the hidden layer (SI Appendix, Fig. S2 D–F), which we analyzed using
metric multidimensional scaling (Fig. 4B). See SI Appendix for full details.

Response Time Model. We simulated response time on direct and inference
test trials using the LBA framework (16). LBA assumes that evidence for each
available option accumulates until a decision threshold is reached. The first

accumulator to reach the decision threshold determines which option is
selected. In our model, each choice was represented by two accumulators:
one for the variable-speed pattern-completion process and one for the
fixed-speed vector-based retrieval process (Fig. 6A). We used a hierarchical
Bayesian model to obtain estimates of the pattern completion process speed
ðv1Þ and the vector-based retrieval process speed ðv2Þ for each participant,
fitting responses for all triads regardless of learning condition. Finally, we
used regression to test whether common geometry across triads or separa-
tion of individual triads in each region was related to unique variance in the
v1 and v2 parameter estimates for each participant. See SI Appendix for
full details.

Code Availability. Code implementing the searchlight analysis, network
model, and response time model is available at https://osf.io/6eqbf/.
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