
Behavioral/Cognitive

Semantic Knowledge of Famous People and Places Is
Represented in Hippocampus and Distinct Cortical
Networks
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Studies have found that anterior temporal lobe (ATL) is critical for detailed knowledge of object categories, suggesting that it has
an important role in semantic memory. However, in addition to information about entities, such as people and objects, semantic
memory also encompasses information about places. We tested predictions stemming from the PMAT model, which proposes there
are distinct systems that support different kinds of semantic knowledge: an anterior temporal (AT) network, which represents in-
formation about entities; and a posterior medial (PM) network, which represents information about places. We used representa-
tional similarity analysis to test for activation of semantic features when human participants viewed pictures of famous people and
places, while controlling for visual similarity. We used machine learning techniques to quantify the semantic similarity of items
based on encyclopedic knowledge in the Wikipedia page for each item and found that these similarity models accurately predict
human similarity judgments. We found that regions within the AT network, including ATL and inferior frontal gyrus, represented
detailed semantic knowledge of people. In contrast, semantic knowledge of places was represented within PM network areas,
including precuneus, posterior cingulate cortex, angular gyrus, and parahippocampal cortex. Finally, we found that hippocampus,
which has been proposed to serve as an interface between the AT and PM networks, represented fine-grained semantic similarity
for both individual people and places. Our results provide evidence that semantic knowledge of people and places is represented
separately in AT and PM areas, whereas hippocampus represents semantic knowledge of both categories.
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Significance Statement

Humans acquire detailed semantic knowledge about people (e.g., their occupation and personality) and places (e.g., their cultural
or historical significance). While research has demonstrated that brain regions preferentially respond to pictures of people and pla-
ces, less is known about whether these regions preferentially represent semantic knowledge about specific people and places. We
used machine learning techniques to develop a model of semantic similarity based on information available from Wikipedia, vali-
dating the model against similarity ratings from human participants. Using our computational model, we found that semantic
knowledge about people and places is represented in distinct anterior temporal and posterior medial brain networks, respectively.
We further found that hippocampus, an important memory center, represented semantic knowledge for both types of stimuli.

Introduction
Navigating through daily life requires accessing knowledge about
previously encountered people and places. For example, making
plans to meet friends at a restaurant might involve retrieving

information about the restaurant (e.g., its location, the type of
food served there, whether the place is dog-friendly) and infor-
mation about the people you are meeting there (e.g., their person-
alities, dietary restrictions, whether anyone might be bringing a
dog). Detailed semantic knowledge, which contains information
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about common features that generalize across specific episodes
(Tulving, 1972), enables decision-making based on both the fea-
tures of the relevant location and personal characteristics.

Distinct brain regions are recruited during viewing (Kanwisher
et al., 1997; Epstein and Kanwisher, 1998; Collins and Olson,
2014) and perceptual discrimination (Lee et al., 2008; Barense et
al., 2010a; Mundy et al., 2013; Costigan et al., 2019) of people and
places. However, it is unclear whether distinct or overlapping areas
are involved in representing semantic knowledge of people (e.g.,
personality, occupation, relationships) and places (e.g., spatial lay-
out, cultural and historical significance). Anterior temporal lobe
(ATL) (Patterson et al., 2007; Martin et al., 2018) and inferior
frontal gyrus (IFG) (Thompson-Schill et al., 1997; Simmons et al.,
2010) have been shown to play domain-general roles in represent-
ing and retrieving semantic knowledge. ATL in particular is
thought to be a semantic hub that connects the proper names of
unique entities, including both famous people and places, with
knowledge about those unique entities (Gorno-Tempini and
Price, 2001; Schneider et al., 2018).

Other work suggests, however, that distinct networks support
semantic knowledge for people and places. ATL is specifically
recruited during processing of social stimuli (Simmons and
Martin, 2009; Simmons et al., 2010), including faces (Lee et al.,
2007; Harry et al., 2016). Such findings have led to the proposi-
tion that ATL functions as part of an anterior temporal (AT) net-
work, including the amygdala, inferior temporal cortex (ITC),
and orbitofrontal cortex, to process information about individual
entities, such as people and objects (Barense et al., 2010b;
Ranganath and Ritchey, 2012; Clarke and Tyler, 2014; Collins et
al., 2016; Harry et al., 2016). IFG is functionally coupled with
ATL (Libby et al., 2012), suggesting it may also be a component
of the AT network. Conversely, a posterior medial (PM) net-
work, including parahippocampal cortex (PHC), retrosplenial
cortex (RSC), angular gyrus, and precuneus, has been proposed
to represent situation models that reflect semantic knowledge
about places (Walther et al., 2009; Baldassano et al., 2018).
The AT and PM networks are anatomically and functionally
connected with the hippocampus (Witter et al., 2000; Kahn
et al., 2008; Ranganath and Ritchey, 2012), which may repre-
sent domain-general conceptual content (Quiroga et al.,
2008; De Falco et al., 2016; Mack et al., 2016; Morton et al.,
2017). Here, we tested whether hippocampus and the indi-
vidual component regions of the AT and PM networks repre-
sent domain-general or domain-specific semantic knowledge
of people and places.

To quantify neural representations of semantic knowledge, we
collected fMRI data while participants viewed pictures of 60 fa-
mous people and 60 famous locations around the world (Fig. 1A).
We used representational similarity analysis (RSA) (Kriegeskorte
et al., 2008a) to isolate neural representations of semantic knowl-
edge of people and places (Fig. 1B). We first used text from
Wikipedia articles with natural language embedding methods to
develop a model of semantic similarity that successfully predicts
human similarity judgments. We then compared the observed
neural dissimilarity patterns for pairs of items with the dissimilar-
ity predicted by our computational model of semantic knowledge.
For places, we also tested whether geographical distance, inde-
pendent of overall semantic similarity, was represented in neural
dissimilarity patterns. We controlled for visual similarity using a
model of low-level visual processing (Mutch and Lowe, 2006).
This approach allowed us to test whether AT and PM regions are
specifically involved in representing detailed semantic features of
people and places, respectively, with hippocampus representing
domain-general semantic content.

Materials and Methods
Participants
Thirty-seven right-handed volunteers participated in the scanning study
(19 women; ages 18-30 years; mean= 22.36 3.6 years [SD]). Consent
was obtained in accordance with an experimental protocol approved by
the Institutional Review Board at the University of Texas at Austin.
Participants received monetary compensation for their involvement in the
study. Data from 4 participants were excluded for excessive movement
(more than two runs with .30% censored volumes; for details, see
Functional ROIs). Data from the remaining 33 participants were included
in all analyses (18 women; ages 18-30 years; mean 22.36 3.7 years).

One-hundred fifty volunteers participated in the online similarity
judgment task (67 women; ages 22-34 years; mean= 29.36 2.3 years
[SD]). Participants were recruited and compensated through Amazon
Mechanical Turk. Consent was obtained in accordance with an experi-
mental protocol approved by the Institutional Review Board at the
University of Texas at Austin. Participants received monetary compensa-
tion for their involvement in the study. Data from 48 participants were
excluded because of low performance on the manipulation check test or
catch trials (for details, see Similarity judgment task). Data from the remain-
ing 102 participants (44 women; ages 22-34 years; mean 29.46 3.3 years
[SD]) were included in analysis of similarity ratings.

Materials
Stimuli consisted of 120 images of famous people and places (30 male,
30 female; 30 manmade, 30 natural; see Fig. 1C). Stimuli were selected to
maximize average familiarity of the stimuli, based on familiarity ratings
collected from a population with similar demographics to our partici-
pants. For the purposes of stimulus selection, we determined average fa-
miliarity of each stimulus based on ratings on a 4 point scale collected
from participants (ages 18-30 years) at Vanderbilt University (Morton
and Polyn, 2017). Photographs of famous person faces and famous loca-
tions were obtained from free sources on the Internet. Images of people
were edited to remove the background. Location pictures were selected
to be taken during the day and outside, with the exception of locations
best known for their interior (Sistine Chapel, Carlsbad Cavern, and
Mammoth Cave). An additional 18 images of common objects were
used in the manipulation check test of the online similarity judgment
study.

Experimental design and statistical analyses
Participants first completed a one-back task during fMRI scanning,
which allowed us to define category-sensitive functional ROIs. The task
was designed to measure brain activity related to people, places, objects,
and rest. Participants were presented with blocks of color photographs
of unfamiliar faces (36 female, 36 male), unfamiliar places (36 manmade,
36 natural), and 72 common objects. Each of four scanning runs
included six 20 s blocks (one each of female faces, male faces, manmade
places, and natural places as well as two object blocks), with 18 s of rest
at the beginning and end. During each block, participants viewed 10
stimuli (1.6 s duration, 0.4 s interstimulus interval) while performing a
one-back task. Participants indicated via button press whether each stim-
ulus was new or a repeat (each block contained one repeat).

After the one-back task scans, participants completed a stimulus
viewing task that allowed us to estimate the BOLD activity response for
each stimulus. Participants were presented with images of the 120 fa-
mous people and places, with their names shown below, while complet-
ing an incidental color-change detection task (Fig. 1A). There were six
runs of the viewing task; each run included 40 stimuli (10 from each sub-
category of female, male, natural, and manmade) that were each pre-
sented twice. Presentation order was randomized within each run. Each
stimulus was presented in two randomly selected runs, for a total of four
presentations per stimulus. Each stimulus was presented for 2 s, with an
interstimulus interval of 2-6 s. The frequencies of the different intersti-
mulus intervals were exponentially distributed (durations of 2, 4, and 6 s
were presented with a frequency ratio of 4:2:1, respectively). Participants
performed a change-detection task during the presentation of the stimuli
to ensure sustained attention. Participants pressed one button if a small
black circle at the center of the image turned blue and another if the
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circle turned yellow; the color change occurred at 0.25-0.75 s after pic-
ture onset. There was no instruction regarding what to think about (i.e.,
physical characteristics or semantic properties) during the task. The
change-detection task was chosen to follow prior work examining stimu-
lus-specific representations (Kriegeskorte et al., 2008b) and to ensure
that task demands did not vary for the different stimuli. After the one-
back task and viewing task scans, participants completed a memory task
that spanned 2 d, with additional scans on the second day. Results
related to the memory task will be reported elsewhere; here, we focus on
the one-back and viewing tasks, which take place before any learning for
the memory task.

Statistical analysis of fMRI data used nonparametric permutation
tests to control Type I error and correct for multiple comparisons.
Details of individual statistical analyses are described in Partial correla-
tion analysis, Functional coupling analysis, and Searchlight analysis.

Image acquisition
Imaging data were acquired on a 3.0 T Siemens Skyra MRI at the
University of Texas at Austin Biomedical Imaging Center. A T1-

weighted 3-D MPRAGE volume (TR: 1.9 s, TE: 2.43ms, flip angle: 9°,
FOV: 256 mm, 192 slices, 1 mm3 voxels) was acquired on each day for
coregistration and parcellation. Two oblique coronal TSE T2-weighted
volumes were acquired perpendicular to the main axis of the hippocam-
pus (TR: 13.15 s, TE: 82ms, flip angle: 150°, 384! 384 matrix, 60 slices,
0.4! 0.4 mm in-plane resolution, 1.5 mm through-plane resolution) to
facilitate localization of activity in the medial temporal lobe. High-reso-
lution whole-brain functional images were acquired using a T2p-
weighted multiband accelerated EPI pulse sequence (TR: 2 s, TE: 31ms,
flip angle: 73°, FOV: 220 mm, 75 slices, matrix: 128! 128, 1.7 mm3 vox-
els, multiband factor: 3, GRAPPA factor: 2, phase partial Fourier: 7/8).
We acquired a field map on each day (TR: 589 mm, TE: 5ms and
7.46ms, flip angle: 5°, matrix: 128! 128, 60 slices, 1.5! 1.5! 2 mm vox-
els) to allow for correction of magnetic field distortions.

Image processing
Data were preprocessed and analyzed using FSL 5.0.9 (FMRIB’s Software
Library; https://fsl.fmrib.ox.ac.uk/fsl) and Advanced Normalization
Tools 2.1.0 (ANTS; http://stnava.github.io/ANTs). The T1 and
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Figure 1. A, During scanning, participants viewed pictures and names of famous people and places while performing an incidental color-change detection task. B, To determine whether a
given brain region represented semantic features, we estimated the dissimilarity of neural activation patterns of each pair of items to create a representational dissimilarity matrix (RDM). We
then compared the neural RDM with the RDM predicted by a model of semantic similarity, after controlling for visual similarity. For places, we also tested for representation of physical location
by comparing the neural RDM to an RDM based on geographical distance between locations, after controlling for the semantic and visual models. C, Model RDMs for the people and places
according to semantic, visual, and geography models (semantic dissimilarity is taken from the wiki2USE model). Photographs illustrate the items being compared for each set of rows and col-
umns. Dissimilarity is shown by rank.
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coronal T2 scans for each participant were each corrected for bias
field using N4BiasFieldCorrection, coregistered using antsRegistra-
tion and antsApplyTransforms, scaled using a single multiplicative
value, and averaged. FreeSurfer 6.0.0 was used to automatically seg-
ment cortical and subcortical areas based on the averaged T1 scans
and to automatically identify hippocampus based on the averaged
coronal T2 scans. The buildtemplateparallel program from ANTS
(Avants et al., 2010) was used to create a group-level T1 template
from brain-extracted MPRAGE scans from 30 individual partici-
pants (rigid initial target, three affine iterations, 10 nonlinear itera-
tions). The included 30 participants were a subset of the current
sample of 33 that were also included in analysis of the memory task.
The resulting template was registered to the FSL 1 mm MNI tem-
plate brain using affine registration implemented in ANTs, to obtain
a final template.

Functional scans were corrected for motion through alignment to the
center volume using MCFLIRT, with spline interpolation. Functional
scans were unwarped using a modified version of epi_reg from FSL,
which uses boundary-based registration implemented in FSL (Greve and
Fischl, 2009), followed by ANTs to refine registration between functional
scans and the T1. A brain mask derived from FreeSurfer was projected
into native functional space and used to remove nonbrain tissue from the
unwarped scans. Average brain-extracted unwarped functional scans
were registered to a single reference scan (the first study-phase scan on
the second day) using ANTS. After calculating all transformations,
motion correction, unwarping, and registration to the reference func-
tional scan were conducted using B-spline interpolation, in two steps to
minimize interpolation. The bias field for the average image was esti-
mated for each scan using N4 bias correction implemented in ANTS and
removed by dividing the timeseries by a single estimated bias field image.
Functional time series were high-pass filtered (128 s FWHM) and
smoothed at 4 mm FWHM using FSL’s SUSAN tool.

Anatomical ROIs
We examined anatomic regions within the PM and AT networks, which
have been proposed to represent context and item information, respec-
tively. Following a recent study examining these networks (Cooper and
Ritchey, 2019), we used the Harvard-Oxford cortical atlas to define the
PM network areas of angular gyrus, precuneus, and posterior cingulate
cortex (PCC), and the AT network areas of amygdala, fusiform cortex,
temporal pole, ITC, and orbitofrontal cortex. We also examined the pars
opercularis and pars triangularis regions of IFG, which exhibits similar
functional connectivity to AT regions (Libby et al., 2012), suggesting
that IFG may also be part of the AT network. Regions were taken from
the maximum probability atlas after thresholding at 50%. We further
examined PHC and perirhinal cortex, which are thought to be critical
regions within the PM and AT networks, respectively (Ranganath and
Ritchey, 2012). PHC and perirhinal cortex were drawn manually on the
FSL 1 mmMNI template and transformed to our custom template using
ANTs. Finally, we interrogated anterior and posterior subdivisions of
hippocampus, which is thought to be a zone of convergence between the
PM and AT networks (Witter and Amaral, 1991; Witter et al., 2000;
Ranganath and Ritchey, 2012; Cooper and Ritchey, 2019). Hippocampus
was automatically labeled for individual subjects using FreeSurfer 6.0.0
(Iglesias et al., 2015), based on their high-resolution T2 coronal scans.
The posterior hippocampus region was defined as the posterior two-
thirds of hippocampus, along the longitudinal axis, and the anterior hip-
pocampus region was defined as the anterior third.

Functional ROIs
Following prior studies of person and place processing, we defined a set
of functional ROIs based on the one-back task scans (see Fig. 6A,B). We
modeled the one-back task scans using a GLM implemented in FSL’s
FEAT tool (Woolrich et al., 2001). Task blocks, including images of
faces, places, objects, and rest, were convolved with a canonical HRF.
Additional regressors of no interest included six motion parameters and
their temporal derivatives, framewise displacement, and DVARS (Power
et al., 2012). Additional regressors were created to remove time points
with excessive motion (defined as .0.5 mm of framewise displacement

and .0.5% change in BOLD signal for DVARS), as well as one time
point before and two time points after each high-motion frame. High-
pass temporal filtering (128 s FWHM) was applied to the regressors.
Parameter estimates were averaged across runs for each participant.
Individual participant parameter estimates were transformed to our cus-
tom template space using ANTS, and voxel-level significance was
assessed using FSL’s FLAME 1 (Woolrich et al., 2004). Contrast z scores
were thresholded to obtain each functional ROI on the group template
(see Fig. 6A,B).

Person-sensitive ROIs were defined based on a contrast of faces .
places 1 common objects. We defined occipital face area (OFA), fusi-
form face area (FFA), and anterior temporal face area (ATFA) based on
published definitions (Collins and Olson, 2014). OFA was only clearly
defined in the right hemisphere, so only the right side was included; the
other ROIs were defined bilaterally. Place-sensitive ROIs were defined
based on a contrast of places. faces1 common objects. Place-sensitive
ROIs included occipital place area (OPA), RSC, and parahippocampal
place area (PPA) (Kauffmann et al., 2015). Functional ROIs were
reverse-normalized using ANTs to obtain ROIs in each participant’s
native functional space. Native-space ROIs were then dilated by 1 voxel.

Estimation of item-level activation patterns
Patterns of activation associated with individual items were estimated
under the assumptions of the GLM using a least squares–separate
approach (Mumford et al., 2012). Parameter estimate images were calcu-
lated for each of the 40 items presented in each scan. Each 2 s item pre-
sentation was convolved with a canonical (double C) HRF. Each item
was estimated using a separate model; the two presentations of an item
within each scan were modeled as a single regressor, with presentations
of other items modeled as a separate regressor. As for the functional ROI
analysis, additional regressors of no interest included six motion param-
eters and their temporal derivatives, framewise displacement, DVARS,
and time points with excessive motion. High-pass temporal filtering
(128 s FWHM) was applied to the regressors. Individual stimulus activity
parameter estimates were calculated using a GLM implemented in cus-
tom Python routines. Each voxel’s activity was z-scored across stimuli
within run. Finally, normalized activity patterns for each item were aver-
aged across the two scans in which that item appeared, resulting in 120
estimated item activity patterns.

Similarity judgment task
In a separate study, 150 participants completed an online similarity judg-
ment task to measure semantic and visual similarity of the famous peo-
ple and places. Participants were randomly assigned to one of four
conditions: person semantic similarity, person visual similarity, place
semantic similarity, or place visual similarity. Stimuli were presented
and responses were collected using the Collector program for online
data collection (https://github.com/gikeymarcia/Collector), which was
hosted on a server running PHP. All trials were self-paced, and partici-
pants were given up to an hour to complete the task.

In each condition, participants first rated their familiarity with each
of the 60 items on a scale from 1 to 4 (1 = very unfamiliar; 2 = somewhat
unfamiliar; 3 = somewhat familiar; 4 = very familiar). Participants were
then presented with a manipulation check test, in which they were
instructed to rate the similarity of common objects based on either visual
or semantic similarity, depending on the condition to which they were
assigned. There were 6 manipulation check trials; each trial included
three common objects. On each trial, participants were presented with
an object in the center of the screen and asked to select the most similar
item (Roads and Mozer, 2019) based on either visual or semantic simi-
larity. Each trial was designed to have an item with high visual similarity
and an item with high semantic similarity. For example, on one trial, the
center item was a life preserver, the visually similar choice was a donut,
and the semantically similar choice was a boat. Participants were
excluded from further analysis if they answered ,4 of the 6 questions
correctly based on their instructions.

Finally, participants completed 84 trials of a similarity judgment task
(Fig. 2C). Participants were shown a 3! 3 array of 9 pictures with stimu-
lus names below them and asked to click on the most similar item to the
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center picture, followed by the second most similar item (Roads and
Mozer, 2019). After selecting a picture, a square appeared around it to
indicate selection. In each block of 21 trials, there was one catch trial to
assess whether participants were completing the task correctly. In each
catch trial, one of the items was identical to the center item but shown
with a left-right mirror image of the center image. Catch trials were
scored as correct if participants selected the identical item as either of
their two responses on that trial. Participants were not instructed about
the catch trials ahead of time. Participants were excluded from further
analysis if they responded incorrectly to .1 of the 4 catch trials. After
applying exclusion criteria, there were at least 25 participants in each
condition (person semantic: 26 participants; place semantic: 25; person
visual: 25; place visual: 26).

Models of representational dissimilarity
wiki2vec model. To characterize the information contained in item-

level activation patterns measured during the viewing task, we developed
a model of the semantic features of our famous people and place stimuli.
The model is derived from Wikipedia text, which is well suited to cap-
ture abstract general knowledge, as the articles are focused on encyclope-
dic descriptions. The wiki2vec model quantifies the semantic similarity

of each pair of stimuli, allowing us to use RSA to measure neural repre-
sentations of semantic knowledge about people and places (Fig. 1B). We
first obtained text from the Wikipedia page of each famous person and
place. TheWikipedia text for each item was then preprocessed using nat-
ural language processing and translated into a vector representation
using Google word2vec, a publicly available model that was trained on
text from Google News (Mikolov et al., 2013a).

To obtain text reflecting general knowledge of each item around the
time of the experiment, we downloaded a Wikipedia Extensible Markup
Language dump (https://dumps.wikimedia.org) archived on February
19, 2015, 3 months before the start of the experiment. These files were
converted to plain text using Wikipedia Extractor (https://github.com/
bwbaugh/wikipedia-extractor). We searched for the closest match of
each item to a Wikipedia article and extracted the text for that article
(Fig. 2A). The text was then processed using the Python-based Natural
Language Toolkit (Bird et al., 2009) to generate a set of terms related to
that item. To obtain a reduced set of terms related to item meaning,
we first extracted the nouns, verbs, and adjectives. Named entities
detected using NLTK, such as “Eiffel Tower,” were treated as a sin-
gle unit. This unitization of named entities is useful for capturing
the distinct meaning of phrases from their individual component

A B Article word/phrase vectorsWikipedia text Similarity judgments
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and producer. She became a 
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(1989) and "Pretty Woman", she 
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"Erin Brockovich" (2000).
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Figure 2. A, Semantic features of famous people and places were quantified through analysis of text from the Wikipedia article for each item. B, To develop the wiki2vec model, we first
processed article text to extract a set of words and phrases for each item. We then converted each word or phrase to a 300-dimensional vector representation using the word2vec model of
semantic similarity and summed all vectors to obtain the final wiki2vec vector for each item. The wiki2USE model was created by using the Universal Sentence Encoder (USE) to encode the
text for each item as a 512-dimensional vector. C, We validated the Wikipedia-based models using a similarity judgment task. Participants were presented with a central item (e.g., Eiffel
Tower) and asked to select the most similar (green) and second most similar (blue) items. Separate groups rated visual and semantic similarity. Similarity judgments were used to estimate sep-
arate psychological embeddings for each category based on visual and semantic similarity. D–F, Multidimensional scaling plots illustrating the semantic similarity of famous people according
to the wiki2vec (D) and wiki2USE (E) models after Procrustes alignment to the semantic embedding model (F). Items that are closer together have more similar representations according to
the model. G–I, Multidimensional scaling plots for the wiki2vec (G), wiki2USE (H), and semantic embedding (I) models for famous places.
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words; for example, “Eiffel Tower” has a distinct meaning from
“Eiffel” and “Tower” separately. To further reduce the set of unique
terms, each noun and verb was then replaced with its lemma, or root
word (for example, “acting” and “acts” would both be replaced with
“act”). This process produced a set of terms (and their frequency of
occurrence) for each of the 120 items.

To translate the set of terms for each Wikipedia article into a quanti-
tative representation, we used Google’s publicly available word2vec vec-
tors dataset, which contains 300-dimensional vectors for 3 million words
and phrases (Mikolov et al., 2013a,b). Phrases included combinations of
words that appeared more frequently than would be expected based on
the frequency of the constituent words (e.g., “global warming”). This set
of vectors reflects the co-occurrence of words within the Google News
corpus, with words that tend to occur in similar contexts being repre-
sented with similar vectors. These vectors provide a quantitative repre-
sentation of a large set of terms, which can be used to correctly solve
analogies (e.g., what is the word that is similar to “small” in the same
sense as “biggest” is similar to “big”?) through simple addition and sub-
traction of individual vectors (Mikolov et al., 2013a). Code for word2vec
and trained vectors can be found at https://code.google.com/archive/p/
word2vec/.

We first searched for word2vec vectors corresponding to each term
that appeared in any of the item term sets. We found matches for
26,222 of the 37,314 unique terms (the terms without matches were of-
ten unusual phrases or hyphenated terms, e.g., “then-husband”). We
then generated a vector for each item by summing word2vec vectors
corresponding to the terms derived from that item’s Wikipedia article
(Fig. 2B). Vectors were weighted by the number of times they appeared
in the article. Finally, the estimated semantic dissimilarity between
each item was calculated as 1 minus the correlation between each pair
of item vectors to generate a semantic representational dissimilarity
matrix (RDM) based on our wiki2vec model, for both people and pla-
ces (see Fig. 4).

We used nonmetric multidimensional scaling (Kruskal, 1964) to vis-
ualize the relative distances of items within each category according to
the wiki2vec model and found that it captures detailed item features,
such as a person’s occupation and the different subtypes of locations
(Fig. 2D,G). The wiki2vec model quantifies features of both people and
places within a common high-dimensional space, allowing us to use

RSA to probe neural representations of semantic knowledge for both cat-
egories using the same model.

wiki2USE model.We also developed an alternate model based on the
Wikipedia text using the recently developed Universal Sentence Encoder
(USE) version 4 (Cer et al., 2018). USE encodes text input sentences or
paragraphs as 512-dimensional vectors, which may be used as embed-
dings for multiple natural language processing tasks. USE was trained on
a set of different tasks, including unsupervised learning from arbitrary
running text, conversational input-response, and classification (Cer et
al., 2018). We used the Deep Averaging Network version (available at
https://tfhub.dev/google/universal-sentence-encoder/4) with TensorFlow
2.1 to encode the Wikipedia text for each article as a vector. The Deep
Averaging Network aggregates vector representations of individual
words in the article to form a single vector summarizing the text. We
then calculated semantic dissimilarity as 1 minus the correlation between
each pair of item vectors (Fig. 1C; see also Fig. 4). We used nonmetric
multidimensional scaling to visualize relative distances between items
according to the model (Fig. 2E,H).

Geography model. A key semantic feature of familiar places is their
geographical location. While the wiki2vec and wiki2USE models are
based onWikipedia text that includes location information, they empha-
size other semantic features, such as location subtype (Fig. 2G,H).
Therefore, to measure neural representations of relative spatial distance,
we also defined a geography model based on each landmark’s location
on the Earth (Fig. 3). We used Google Maps to search for each item and
recorded the longitude and latitude. We then calculated the pairwise dis-
tance between each pair of locations, using the haversine formula to cal-
culate distance along the Earth’s surface in killimeters. These pairwise
distances together form the geography model RDM (Fig. 1C). We used
this model with RSA to identify neural patterns that reflect the physical
distance between places. For regions that correlated with the geography
model, we visualized distance coding by dividing pairwise distances
between places into equally spaced bins. We used non-negative least
squares fitting (Jozwik et al., 2016) to control for effects of semantic simi-
larity and visual similarity on neural dissimilarity between places. We
then normalized neural dissimilarity across all stimulus pairs to obtain a
z score of neural dissimilarity for each pair. Finally, for each subject, we
calculated an average neural dissimilarity z score for each geographical
distance bin.

Figure 3. Geographic location of each famous place presented in the study. The geographic model reflects the shortest path between each pair of locations, based on their latitude and lon-
gitude. Inset, Locations in North America.
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Visual model. Visual similarity is sometimes correlated with seman-
tic similarity. For example, Carlsbad Caverns National Park and
Mammoth Cave National Park are both more visually similar and
semantically similar to one another than either are to the Great Barrier
Reef. To control for visual similarity, we used a model of early visual
processing, the Hierarchical Max-pooling (HMAX) model (Mutch and
Lowe, 2006). While more sophisticated supervised models of visual proc-
essing have been developed recently (Khaligh-Razavi and Kriegeskorte,
2014), we selected HMAX as a simple, well-studied model that could be
used to control for low-level processing. We used the HMAX package of
the Cortical Network Simulator framework (Mutch et al., 2010), with the
parameters of the full model described by Mutch and Lowe (2006), to
process grayscale versions of each image (http://cbcl.mit.edu/jmutch/
cns). Response vectors from the C1 layer of the model, which is pro-
posed to reflect properties of early visual cortex, were extracted for each
image (Clarke and Tyler, 2014). We calculated 1 minus the correlation
between each pair of vectors to generate the visual model RDM for each
category (Fig. 1C).

Embedding models. To validate our models of semantic similarity,
we used a model of similarity judgments to estimate a psychological
embedding for each of the four conditions in the similarity judgment
task (Fig. 2C). The model assumes that items are represented within a
multidimensional embedding and that similarity judgments are made
based on the Minkowski distance between items in the embedding
(Roads and Mozer, 2019). We fit the model to the data from our similar-
ity judgment task to estimate a separate embedding for each condition
(person visual, person semantic, place visual, and place semantic). We
then used the embeddings to calculate the dissimilarity between each
pair of items in each condition, resulting in four RDMs. In contrast to
other methods that require collecting behavioral similarity judgments
for each pair of items (e.g., Martin et al., 2018), this method is efficient
for estimating item dissimilarity for large sets of items. If n is the number
of items, d is the number of estimated dimensions in the embedding,
and k is a fixed number of parameters that determine how similarity
judgments are made, fitting an embedding model involves estimating
dn1k parameters. In contrast, estimating pairwise dissimilarity using
similarity judgments requires estimating ðn2 # nÞ=2 parameters. As a
result, the embedding method can estimate pairwise dissimilarity more
efficiently for large datasets.

We estimated the embeddings in Python 3.7.7 using PsiZ 0.2.2
(https://github.com/roads/psiz), TensorFlow 1.14.0, and TensorFlow
Probability 0.7.0. Similarity judgment trials were excluded if the cue item
was rated as “very unfamiliar” by the participant in the familiarity rating
task. There was a mean of 72.76 11.0 (SD) included trials for each par-
ticipant (total included trials by condition: people semantic, 1999 trials;
places semantic, 1783; people visual, 1824; places visual, 1808). Each
embedding was estimated by inferring a 6-dimensional latent psycholog-
ical space underlying the similarity judgments. Similarity judgments
were assumed to be made based on an exponential similarity function of
the psychological distances between the cue item in the center and the
eight probe items surrounding it (Shepard, 1987; Roads and Mozer,
2019). The similarity s between items m and n in the latent embedding z
was defined as follows:

s zm; znð Þ ¼ exp #b kzm # znktr
! "

1 g ;

Where r is a free parameter that controls the type of distance (e.g.,
r ¼ 2 results in Euclidean distance) and b , t , and g are free parameters
that control the gradient of generalization.

The item locations in the embedding were estimated using maxi-
mum likelihood estimation. The Minkowski distance between each pair
of items was calculated based on the estimated embedding space and dis-
tance parameter r to generate a dissimilarity matrix for each embedding
model (Fig. 4). We visualized the relative distances between items using
nonmetric multidimensional scaling (Fig. 2F,I).

Model validation.We assessed each semantic model by comparing it
with the semantic embedding model and with RDMs based on features
of the stimuli (Fig. 4). Feature RDMs for people represented gender,
main occupation, and age in years. All categorical feature RDMs, such as

gender and occupation, were defined as 0 for item pairs in the same cate-
gory and 1 for item pairs in different categories. Main occupation was
determined based on the summary description of each person on
Wikipedia. Occupations were actor, athlete, politician, rapper, singer,
and television personality. The age RDM was computed based on age
difference in years. Feature RDMs for places represented category (natu-
ral vs manmade), subcategory, age, and continent. Location subcategory
was defined based on the summary description from Wikipedia.
Manmade subcategories were amphitheater, bridge, church, dam, for-
tress, headquarters, mausoleum, museum, neighborhood, performing
arts center, prison, theme park, and tower. Natural subcategories were
archipelago, cave, desert, forest, island, lake, mountain, ocean, river, sa-
vanna, sea, valley, and waterfall. Age was defined for manmade locations
as the date of construction. Dissimilarity of manmade locations in the
age RDM was defined as the difference in construction date in years.
Dissimilarity of natural locations was defined as 0, and dissimilarity
between natural and manmade locations was defined as a constant value
that was greater than the dissimilarity between any two manmade loca-
tions. In the continent RDM, items on the same continent were defined
as having a distance of 0, and items on different continents were defined
as having a distance of 1.

We first tested whether each semantic model was related to the fea-
ture RDMs. We used partial correlation analysis with non-negative least
squares to assess whether each feature explained unique variance in the
semantic model after controlling for the other features. First, the seman-
tic model RDM, the feature RDM of interest, and control RDMs were
converted to rank values (i.e., each dissimilarity value was replaced by
the rank of that value within the whole RDM, excluding the diagonal).
We then used non-negative least squares regression (Jozwik et al., 2016)
to fit both the semantic model and the feature model of interest using
the other models, and took the residuals from these fits. We then calcu-
lated the Spearman correlation between the semantic model and feature
model of interest residuals. This correlation was compared with a base-
line estimated by permuting the rows and columns of the RDM for the
feature model of interest and calculating the partial correlation for that
scrambled model; this process was repeated 100,000 times to generate a
permutation distribution. The actual correlation was compared with this
permutation distribution to calculate a p value for each feature model.

Next, we examined whether each semantic model predicted the dis-
similarity of the semantic embedding model that we derived from behav-
ioral similarity ratings. We used the same partial correlation analysis to
test whether each model of semantic similarity explained unique var-
iance in the semantic embedding model after controlling for the visual
embedding model. We then tested whether the semantic models capture
detailed relationships between items observed in the semantic embed-
ding model. We tested whether each semantic model explained unique
variance in the semantic embedding model after controlling for the vis-
ual embedding model and all feature models. Finally, we compared the
wiki2vec and wiki2USE models in their ability to predict the semantic
embedding model after controlling for the visual embedding model. We
regressed the visual embedding model from the semantic embedding
model, the wiki2vec model, and the wiki2USE model to obtain residuals
for each model. We then used a test of dependent correlations
(Williams, 1959; Steiger, 1980) to determine whether either model was
significantly more correlated with the semantic embedding model after
controlling for the visual embedding model.

Partial correlation analysis
To test our hypothesis that semantic knowledge of people and places is
represented in distinct networks, we used RSA to measure neural repre-
sentations of semantic knowledge while controlling for visual similarity
(Fig. 5). Within a given region, we first calculated the average pattern of
activity for each item. We then created a neural RDM by calculating 1
minus the correlation between the activation patterns observed for each
pair of items (Kriegeskorte et al., 2008a). We used partial correlation to
determine whether the semantic model explained variance in the
observed neural dissimilarity matrix that was not explained by the visual
model. We used MindStorm 0.2.0 to implement the partial correlation
analysis (Morton, 2020). First, the neural RDM, model RDM of interest,
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and control RDM were converted to rank values (i.e., each dissimilarity
value was replaced by the rank of that value within the whole RDM,
excluding the diagonal). We then used non-negative least squares regres-
sion (Jozwik et al., 2016) to fit both the data and the model of interest
using the other models, and took the residuals from these fits. We then
calculated the Spearman correlation between the data and model of in-
terest residuals.

This correlation was compared with a baseline estimated by permut-
ing the rows and columns of the RDM for the model of interest and cal-
culating the partial correlation for that scrambled model; this process
was repeated 100,000 times to generate a permutation distribution. The
actual correlation was compared with this permutation distribution to
calculate a p value for each participant, which was transformed to a z sta-
tistic. Finally, a one-sided nonparametric test was used to assess whether
partial correlation for a given model was significantly greater than
chance across subjects. We corrected for multiple comparisons using a

resampling-based method for controlling false discovery rate (FDR)
(Yekutieli and Benjamini, 1999). The sign of each z statistic was ran-
domly flipped 100,000 times, and a one-sample t test was run for each
comparison and permutation to estimate a null p value distribution. To
account for correlations between ROIs, the same random sign flips were
used across all ROIs. Using the null distribution and the observed p val-
ues, we calculated an estimate, q, of the FDR for each comparison
(Yekutieli and Benjamini, 1999). We thresholded the FDR at q,0:1,
thereby controlling the expected fraction of false discoveries out of the
rejected null hypotheses at 0.1.

For both people and places, we tested the semantic model while con-
trolling for the visual model. For places, we also tested the geography
model while controlling for the visual and semantic models. This analy-
sis allowed us to measure representation of spatial location while con-
trolling for semantic relationships between places that may covary with
geographical location. While the visual model accounts for low-level

Visual embedding

Gender
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Semantic embedding wiki2vec wiki2USE

Visual embedding Semantic embedding wiki2vec wiki2USE

Occupation Age

Category Subcategory Age Continent

HighLow
Dissimilarity

Figure 4. Model validation analysis. A, Models of dissimilarity between pairs of people. Stimulus order is the same as in Figure 1. Dissimilarity is shown by percentile. Behavioral similarity
ratings were used to estimate separate embedding models reflecting visual dissimilarity and semantic dissimilarity. We then evaluated our models of semantic dissimilarity by comparing them
with the behaviorally derived embedding models and stimulus feature models representing gender, occupation, and age. Both the wiki2vec and wiki2USE models were correlated with each of
these stimulus features. Furthermore, both the wiki2vec and wiki2USE models explained unique variance in the semantic embedding model after controlling for the visual embedding model,
even after also controlling for gender, occupation, and age. These results suggest that the semantic dissimilarity models predict both objective stimulus features and fine-grained variation in
psychological dissimilarity between pairs of people. B, Models of dissimilarity between pairs of places. Both the wiki2vec and wiki2USE models of semantic dissimilarity were correlated with
stimulus feature models representing category (natural vs manmade), subcategory (e.g., river, mountain), and continent. The wiki2USE model was also correlated with a stimulus feature model
representing the age of manmade locations. Furthermore, both semantic models explained unique variance in the semantic embedding model after controlling for the visual embedding, even
after also controlling for category, subcategory, age, and continent.
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similarity, stimuli may also be divided into categories
based on visual features; for example, mountains and riv-
ers may be discriminated based on visual characteristics
of the images. To account for visual categories, a follow-
up analysis tested for partial correlation between neural
dissimilarity and the wiki2USE semantic model while
controlling for both the visual model and visual catego-
ries. For people, we included gender as a visual category
control model (Fig. 4A). Place visual categories included
category (natural vs. manmade) and subcategory (e.
g., river, mountain; see Fig. 4B). To test our main
hypothesis that the PM network would represent
semantic similarity of places while the AT network
would represent semantic similarity of people, we
averaged partial correlation z statistics across all
ROIs within each network, separately for people and
places. We then tested for an interaction between
network (AT or PM) and stimulus category (person
or place).

Controlling for familiarity
The similarity judgment task included ratings of famili-
arity on a 4 point scale, with 4 being highest. Based on
the ratings of the 102 participants included in the simi-
larity judgment task, mean familiarity was similar for the
two categories (people: mean 3.14, SEM: 0.08; places:
mean 2.84, SEM: 0.07), although places were less familiar
on average (t(100) = 2.88, p ¼ 0:005, Cohen’s d ¼ 0:57). The mean fami-
liliarity was higher for male celebrities than for female celebrities (female:
mean 3.07, SEM: 0.09; male: mean 3.22, SEM: 0.08; t(50) = 3.68,
p ¼ 0:0006, d ¼ 0:51). Mean familiarity was higher for manmade places
than natural places (manmade: mean 3.01, SEM: 0.07; natural: mean
2.68, SEM: 0.06; t(50) = 9.17, p ¼ 2:7x10#12, d ¼ 1:28).

To control for the difference in familiarity between the subcategories
(female, male, manmade, natural), a follow-up partial correlation analy-
sis used a subset of stimuli with matched familiarity. First, for each item,
we calculated the average familiarity across participants based on the
similarity judgment task data. We then calculated the minimum and
maximum familiarity for each subcategory and excluded any item
that was outside the range of any other subcategory. We next sub-
sampled each subcategory to match the distribution of familiarity
values in the natural category, which had the lowest familiarity on
average. We estimated the density of the distribution of familiarity
values for each subcategory using Gaussian kernel density estima-
tion. We then randomly sampled items from each subcategory,
without replacement, to obtain a matched subsample. The probabil-
ity of each item being sampled was proportional to the target density
(estimated from the natural distribution) divided by the original
density. After subsampling, there were 19 items in each subcategory.
There was no significant difference in familiarity between people
and places for the subsampled stimuli (people: mean 3.04, SEM:
0.09; places: mean 2.94, SEM: 0.07; t(100) = 0.84, p ¼ 0:41, d ¼ 0:17).
We used the subsampled stimuli to test whether there was an inter-
action between network (AT or PM) and stimulus category (person
or place) after controlling for stimulus familiarity.

Functional coupling analysis
We hypothesized that hippocampus, which shares anatomic connections
with both the AT and PM networks (Witter and Amaral, 1991; Witter et
al., 2000; Ranganath and Ritchey, 2012), would be differentially coupled
with person- and place-sensitive ROIs during person and place trials.
We used a functional coupling analysis to test whether functional ROIs
evincing semantic representations of people or places were differentially
coupled with hippocampus during person or place trials. Prior work has
found evidence of differences in anatomic connections and functional
coupling between anterior and posterior hippocampus (Witter and
Amaral, 1991; Witter et al., 2000; Libby et al., 2012), with PHC con-
nected primarily to posterior hippocampus and perirhinal cortex con-
nected primarily to anterior hippocampus. This pattern of connectivity

suggests that person-sensitive ROIs may primarily functionally couple
with anterior hippocampus, and place-sensitive ROIs may primarily
couple with posterior hippocampus.

However, other models differentiate anterior and posterior hip-
pocampus function based on the granularity of representation;
such models suggest that posterior hippocampus represents fine-
grained, local information, whereas anterior hippocampus repre-
sents coarse, global associations reflecting commonalities
(Poppenk et al., 2013; Morton et al., 2017; Brunec et al., 2018),
including conceptual learning of stimulus categories (Mack et al.,
2016). This representational account raises the possibility that
both person- and place-sensitive ROIs will functionally couple
with anterior hippocampus during processing of familiar stimuli.
Thus, we tested functional coupling of person- and place-sensitive
ROIs with posterior and anterior hippocampus separately. We first
calculated the mean activation within each region for each item.
We then calculated the correlation of hippocampus activation for
each item with item activation in each ROI, separately for people
and place trials, and calculated the difference between people and
place trials. We then tested whether the correlation between
regions differed between person and place trials using a nonpara-
metric sign-flipping test. A threshold was set based on the permu-
tation distribution to control familywise error across hippocampal
subregions at p ¼ 0:05.

Searchlight analysis
Searchlight analysis was used to examine representations within hippo-
campus with greater spatial precision. Each searchlight was conducted
within each subject’s native functional space with a radius of 3 voxels,
using the PyMVPA toolbox (Hanke et al., 2009) and custom Python rou-
tines (Morton et al., 2021a). As described in Partial correlation analysis,
we used partial correlation to examine whether the semantic model
explained unique variance in the patterns of activity observed in each
region, after controlling for the visual model. For places, we also tested
whether the geography model explained unique variance after control-
ling for the visual and semantic models.

To account for error in registering individual participants to the
group template, the searchlight was run at all voxels within 3 voxels of
the participant’s individual defined mask defined by FreeSurfer. For
each searchlight sphere, only voxels within the individually defined hip-
pocampus mask were included. Spheres with ,10 included voxels were
excluded from the analysis. The center voxel of each searchlight sphere
was set to the z statistic based on a permutation test with 10,000
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Figure 5. We used a partial RSA to test for neural representations of semantic knowledge. For a given brain
region, we compared the neural RDM with the semantic model RDM. We first used non-negative least squares
to fit the visual model to both the neural and semantic RDMs. Middle row represents the visual model after fit-
ting to the neural and semantic RDMs. We then subtracted these fitted RDMs to obtain residuals. We then used
these residuals to test whether the neural RDM was correlated with the semantic RDM after controlling for the
visual RDMs.
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permutations. Participant z statistic maps were transformed to the
group-level template using antsApplyTransforms. A group-level non-
parametric test was implemented using FSL’s randomise tool with
10,000 permutations. Voxelwise significance was thresholded at
p, 0.01.

To determine cluster-level significance, we estimated spatial smooth-
ness of the data based on residuals from the trial-level GLM of the view-
ing task (in this case, we used a single LSA model) (Mumford et al.,
2012). Residuals from the native-space GLM models for each run were
transformed to template space using ANTs. For small-volume correc-
tion, we generated a group-level hippocampus mask that included all
voxels that were within 1 mm of hippocampus for at least 10% of partici-
pants. Within the group-level ROI, smoothness was estimated using
AFNI 3dFWHMx using the autocorrelation function method, and aver-
aged across all volumes, runs, and subjects. Finally, a cluster size thresh-
old was determined based on this estimated smoothness, using
3dClustSim with 10,000 iterations, one-sided thresholding at p, 0.01,
and familywise a of 0.05.

Software accessibility
Code for running partial RSA with non-negative least squares (Morton,
2020) and for running other reported analyses (Morton et al., 2021a) is
publicly available. Code and instructions for generating the wiki2vec and
wiki2USE models for an arbitrary set of commonly known people, pla-
ces, or things are also publicly available (Zippi et al., 2020; Morton et al.,
2021b).

Results
Wikipedia-based models reflect stimulus features and
predict behavioral measures of similarity
To validate our models of semantic similarity, we used data from
the similarity judgment task to create a behavior-based model of
semantic similarity. Separately for each condition (people seman-
tic, place semantic, people visual, and place visual), we used the
similarity judgment responses to estimate the latent psychologi-
cal embeddings of the items underlying those judgments. We
assessed convergence of each embedding model by comparing the
embedding based on the full dataset with an embedding based on
90% of the data. We found that R2 between the full and restricted
embeddings was at least 86% for each of the conditions (people
semantic: R2 ¼ 0:89; place semantic: R2 ¼ 0:88; people visual:
R2 ¼ 0:86; place visual: R2 ¼ 0:88), suggesting that we had suffi-
cient similarity data to obtain convergence. Best-fitting parameters
for the embedding models were similar for each condition (person
semantic: r ¼ 2:99, t ¼ 1:18, g ¼ 0:0011, b ¼ 15:5; place
semantic: r ¼ 2:29, t ¼ 1:02, g ¼ 0:0, b ¼ 21:7; person visual:
r ¼ 2:08, t ¼ 1:36, g ¼ 0:0014, b ¼ 4:69; place visual: r ¼
2:13, t ¼ 1:74, g ¼ 0:0023, b ¼ 23:5). These parameters
were used to calculate pairwise distances for items in each
condition based on the embeddings (Figs. 2F,I, 4).

We used the feature RDMs and embedding models to evalu-
ate our two Wikipedia-based models of semantic dissimilarity
(Fig. 4). First, to examine what information is present in the
semantic dissimilarity models, we tested whether each semantic
model was correlated with specific stimulus features. For people,
we found that each of the stimulus features we tested explained
unique variance in both the wiki2vec model (occupation: r ¼
0:76, p ¼ 0:00001; gender: r ¼ 0:071, p ¼ 0:0005; age: r ¼ 0:17,
p ¼ 0:0033) and the wiki2USE model (occupation: r ¼ 0:77,
p ¼ 0:00001; gender: r ¼ 0:22, p ¼ 0:00001; age: r ¼ 0:34, p ¼
0:00001). For places, we found that multiple stimulus features
explained unique variance for the wiki2vec model (category:
r ¼ 0:32, p ¼ 0:00001; subcategory: r ¼ 0:16, p ¼ 0:00001; con-
tinent: r ¼ 0:32, p ¼ 0:00001), although building age did not
explain unique variance (r ¼ #0:047, p ¼ 0:9). Each of the place

features we tested explained unique variance in the wiki2USE
model (category: r ¼ 0:21, p ¼ 0:00001; subcategory: r ¼ 0:20,
p ¼ 0:00001; age: r ¼ 0:12, p ¼ 0:00034; continent: r ¼ 0:24,
p ¼ 0:00002). Our results demonstrate that both models are sen-
sitive to multiple semantic features of the people and place
stimuli.

We next compared theWikipedia-based models to the behav-
iorally derived embedding models. To control for any influence
of visual similarity on the semantic similarity judgments, we
tested whether the Wikipedia-based models correlated with the
semantic embedding model after controlling for the visual
embedding model. We found that both wiki2vec and wiki2USE
explained unique variance in the semantic embedding model,
for both people (wiki2vec: r ¼ 0:61, p ¼ 0:00001; wiki2USE:
r ¼ 0:63, p ¼ 0:00001) and places (wiki2vec: r ¼ 0:51, p ¼
0:00001; wiki2USE: r ¼ 0:59, p ¼ 0:00001). Importantly, the
Wikipedia-based models still explained unique variance in the
semantic embedding model after controlling for the stimulus fea-
ture models, both for people (wiki2vec: r ¼ 0:31, p ¼ 0:00001;
wiki2USE: r ¼ 0:34, p ¼ 0:00001) and places (wiki2vec: r ¼
0:33, p ¼ 0:00001; wiki2use: r ¼ 0:39, p ¼ 0:00001). Together,
our results demonstrate that wiki2vec and wiki2USE reflect
objective stimulus features and predict nuanced patterns in be-
havioral measures of semantic similarity.

Finally, we tested whether wiki2vec or wiki2USE were signifi-
cantly more predictive of the semantic embedding model after
controlling for the visual embedding model. For people, we
found that the wiki2USE model was numerically more correlated
with the semantic embedding model than the wiki2vec model
(t(1767) = 1.58, p ¼ 0:12). For places, the wiki2USE model was
significantly more correlated with the semantic embedding
model (t(1767) = 4.72, p ¼ 2:52x10#6). While both models were
correlated with both stimulus features and the behaviorally
derived semantic embedding model, wiki2USE was more predic-
tive of the semantic embedding model overall. Therefore, we use
the wiki2USE model for all subsequent analysis. The wiki2USE
model had a similar partial correlation with the semantic embed-
ding model for people (r ¼ 0:63) and places (r ¼ 0:59), demon-
strating that it provides a reasonable model of semantic
similarity for both categories.

Category-sensitive regions represent semantic similarity of
famous people and places
Research on visual processing has identified regions that show pref-
erential activation toward face (Kanwisher et al., 1997; Collins and
Olson, 2014; Harry et al., 2016) or place (Epstein and Kanwisher,
1998; Hodgetts et al., 2017) stimuli. Neuropsychological work
has also demonstrated that category-sensitive regions in the medial
temporal lobe are necessary for discrimination and naming of indi-
vidual faces or places (Lee et al., 2007; Ahmed et al., 2008).
Furthermore, there is evidence from recent work that patterns of
activation in category-sensitive regions reflect visual place category
(Walther et al., 2009) and learned features of fictional people
(Collins et al., 2016). Here, we test whether patterns of activation in
category-sensitive regions represent semantic knowledge about real-
world famous people and places. We examined the person-sensitive
regions OFA, FFA, and ATFA (Collins et al., 2016), and the place-
sensitive regions OPA, RSC, and PPA (Kauffmann et al., 2015). We
defined the functional ROIs based on data from the one-back task
(Fig. 6A,B) and then examined activity in those ROIs during the
viewing task. In each ROI, we first used RSA to test for semantic
representations of people and places (using the wiki2USE model)
after controlling for low-level visual similarity based on the HMAX
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model (Fig. 5). Follow-up analyses then examined these representa-
tions while controlling for high-level visual categories.

We hypothesized that ATFA, a region within ATL near peri-
rhinal cortex, would represent semantic knowledge about fa-
mous people. ATFA is sensitive to faces (Harry et al., 2016),
distinguishes between individual faces (Kriegeskorte et al., 2007),
and has been proposed to form a view-invariant representation
of individual faces that connects to knowledge about individual
people (Collins and Olson, 2014). We compared ATFA with
OFA and FFA, which are thought to be involved in more inter-
mediate perceptual processing of faces (Collins and Olson,
2014). Consistent with our predictions, we found that activation
patterns in ATFA were consistent with the semantic similarity
model, after controlling for the visual similarity model (Fig. 6C; z
statistic mean: 0.41, SEM: 0.19, t(32) = 2.18, p ¼ 0:019, Cohen’s
d ¼ 0:38). All other ROIs, including OFA, FFA, and the place-
sensitive regions, did not correlate with the semantic model after
controlling for the visual similarity model (FDR q.0:1).

While our initial analysis controlled for low-level visual simi-
larity, the people stimuli include a salient visual category of gen-
der that is not perfectly captured by the visual similarity model.
We found that ATFA similarity correlated with the semantic
similarity model, even after controlling for gender in addition to
the visual similarity model (mean: 0.39, SEM: 0.18, t(32) = 2.16,
p ¼ 0:019, d ¼ 0:38). Finally, we tested whether the semantic
model explained variance in ATFA similarity beyond occupa-
tion. The semantic model did not explain unique variance in
ATFA after controlling for visual similarity, gender, and occupa-
tion (mean: 0.0062, SEM: 0.221, t(32) = 0.028, p ¼ 0:49,
d ¼ 0:005). Thus, we did not find evidence that ATFA is sensi-
tive to more detailed variation in semantic similarity that is not
explained by gender and occupation; however, this null result
might be because of a lack of statistical power to detect nuances

in pattern similarity within ATFA. Overall, our results suggest
that activation patterns in ATFA reflect semantic knowledge of
famous people, while more posterior regions (OFA and FFA) do
not.

We hypothesized that place knowledge would be represented
in RSC and PPA, which have been proposed to be core compo-
nents of the PM network that is thought to represent knowledge
about spatial contexts (Ranganath and Ritchey, 2012). We also
examined OPA, which has been proposed to process the local
elements of places (Kamps et al., 2016); we predicted that OPA
would not be sensitive to the global semantic similarity of places.
First, we observed significant correlations with semantic similar-
ity after controlling for visual similarity (Fig. 6D), in both RSC
(mean: 0.31, SEM: 0.13, t(32) = 2.41, q ¼ 0:011, d ¼ 0:42) and
PPA (mean: 0.66, SEM: 0.18, t(32) = 3.63, q ¼ 0:0011, d ¼ 0:63).
We next examined whether the other category-sensitive regions
represented the semantic similarity of places. OPA was corre-
lated with the semantic similarity model (mean: 0.79, SEM: 0.17,
t(32) = 4.77, q ¼ 0:00004, d ¼ 0:83), as were OFA (mean: 1.12,
SEM: 0.18, t(32) = 6.14, q ¼ 0:00001, d ¼ 1:07) and FFA (mean:
0.46, SEM: 0.14, t(32) = 3.21, q ¼ 0:0021, d ¼ 0:56). ATFA acti-
vation during place presentation did not correlate with the
semantic similarity model (FDR q. 0:1).

However, while the above analysis controlled for low-level
visual similarity using the HMAXmodel, the places may be sepa-
rated into distinct categories based on high-level visual informa-
tion. Thus, we tested whether each region that correlated with
the semantic similarity model was still correlated after control-
ling for the visual similarity model, category (manmade vs natu-
ral), and subcategory (e.g., river, mountain). We found that OPA
and PPA were still correlated with the semantic model after con-
trolling for low-level visual similarity and visual categories (OPA:
mean: 0.38, SEM: 0.19, t(32) = 1.95, q ¼ 0:075, d ¼ 0:34; PPA:
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Figure 6. Representation of semantic relationships of famous people and places in category-sensitive functional ROIs defined from a separate one-back task. A, Person-sensitive ROIs showing
a stronger response to faces than places and objects. B, Place-sensitive ROIs showing a stronger response to places than to faces and objects. C, RSA of person-sensitive regions was used to
identify regions that represent the semantic similarity of famous people, after controlling for visual similarity. Only ATFA patterns showed a unique correlation with the semantic model. Left,
Person-sensitive regions. Right, Place-sensitive regions. D, For famous places, similarity of activation patterns in OFA, FFA, OPA, PPA, and RSC correlated with semantic similarity after controlling
for visual similarity. E, We tested whether any regions represented geographical distance between locations. RSC and FFA pattern dissimilarity correlated with the geographic distance between
landmarks, after controlling for the other models. Points represent individual participant z statistics. Error bars indicate 95% CIs. pFDR q, 0.1.
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mean: 0.35, SEM: 0.21, t(32) = 1.67, q ¼ 0:087, d ¼ 0:29). These
results suggest that the place-sensitive PPA and OPA regions are
sensitive to the detailed semantic relationships between famous
places. We also found that OFA was still correlated with the
semantic model after controlling for low-level visual similarity
and visual categories (mean: 0.68, SEM: 0.19, t(32) = 3.60,
q ¼ 0:0027, d ¼ 0:63). We did not observe correlation with the
semantic model after controlling for visual categories in RSC or
FFA (FDR q. 0:1). While we did not see evidence for significant
coding of semantic relationships in RSC after controlling for vis-
ual scene category, we did observe representation of detailed
place semantics in PPA, as well as lateral occipital areas, includ-
ing OPA and OFA.

We next examined representation of the spatial distance
between famous places. We hypothesized that spatial distance
might be represented independently from the semantic activa-
tion patterns that we observed in PPA, OPA, and OFA. To mea-
sure spatial distance coding, we tested whether the neural pattern
dissimilarity between different places was correlated with the
geographical distance between them, after controlling for the vis-
ual similarity model and the semantic similarity model. This
analysis allowed us to measure distance coding independent of
semantic similarity, which was correlated with coarse geographi-
cal distance (i.e., places in the same continent were more similar
according to the semantic model). We hypothesized that RSC,
which has previously been shown to be sensitive to distance to a
goal during navigation in a familiar environment (Patai et al.,
2019), would represent spatial distance between familiar places.
Consistent with this hypothesis, we found evidence of geographi-
cal coding within RSC (Fig. 6E; mean: 0.36, SEM: 0.18, t(32) =
2.03, p ¼ 0:026, d ¼ 0:35). We next tested for geographical cod-
ing in the other regions, and observed sensitivity to geographical
distance in FFA (mean: 0.38, SEM: 0.17, t(32) = 2.20, q ¼ 0:082,
d ¼ 0:38) but not in other regions (FDR q. 0:1). Sensitivity to
geographical distance may reflect either a detailed representation
of distances between locations or coarser sensitivity to general
spatial location, which we operationalized here as coding of
the continent in which the places are located. We found that
neither RSC (mean: 0.26, SEM: 0.17, t(32) = 1.54, q ¼ 0:13,
d ¼ 0:27) nor FFA (mean: #0.033, SEM: 0.171, t(32) = 0.19,
q ¼ 0:83, d ¼ 0:03) was significantly correlated with the geo-
graphical model after controlling for visual similarity, semantic
similarity, and continent. When considered together, these results
suggest that RSC may represent coarse geographical features of
places, such as the continent on which they are located, but may
not be sensitive to finer levels of geographic distance.

We hypothesized that hippocampus, which is anatomically
connected to both PHC and AT cortex (Witter et al., 2000;
Mohedano-Moriano et al., 2007) and is sensitive to individual
person and place stimuli (Quiroga et al., 2005), would represent
semantic features of both people and places. We predicted that
hippocampus would be differentially functionally coupled to per-
son-sensitive and place-sensitive regions during person and place
trials, respectively. Specifically, we predicted that activity in
ATFA, which represented semantic features of people, would be
functionally coupled with hippocampus during person trials,
whereas activation in PPA and RSC would be functionally
coupled with hippocampus during place trials. We also tested
whether OFA and OPA, which also represented semantic simi-
larity among places, were functionally coupled with hippocam-
pus. We tested functional coupling with posterior and anterior
hippocampus separately. Prior work has found evidence that an-
terior and posterior hippocampus differ in their coupling with

medial temporal lobe, with anterior hippocampus coupling more
strongly with perirhinal cortex and posterior hippocampus cou-
pling with PHC (Libby et al., 2012). These prior functional cou-
pling results suggest that place-sensitive regions, which include
PHC, may be more functionally coupled with posterior hippo-
campus. However, recent work suggests that anterior hippocam-
pus may play a domain-general role in forming representations
that reflect global properties of stimuli (Poppenk et al., 2013;
Morton et al., 2017; Brunec et al., 2019), suggesting that anterior
hippocampus may be functionally coupled with both person-
and place-sensitive regions during processing of familiar person
and place stimuli.

To examine functional coupling with hippocampus, we calcu-
lated the mean activation within each region for each item. We
then calculated the correlation of hippocampal activation for
each item with item activation in ATFA, OFA, OPA, PPA, and
RSC, separately for people and places. We tested whether the
correlation between regions differed between person and place
trials. We found that ATFA activation was more correlated with
anterior hippocampus activation on person trials than on place
trials (mean difference in correlation: 0.0689, SEM: 0.0243,
p ¼ 0:024, d ¼ 0:49, permutation test, corrected across hippo-
campal regions), but there was no significant difference in corre-
lation with posterior hippocampus (mean difference: 0.0309,
SEM: 0.0340, p ¼ 0:26, corrected, d ¼ 0:16). In contrast, activa-
tion in both RSC (mean difference: 0.0906, SEM: 0.0294,
p ¼ 0:0029, corrected, d ¼ 0:54) and PPA (mean difference:
0.0659, SEM: 0.0313, p ¼ 0:028, corrected, d ¼ 0:37) was more
correlated with anterior hippocampal activation on place trials
than on person trials. There was no difference in correlation with
posterior hippocampus for either RSC (mean place-person dif-
ference: 0.0171, SEM: 0.0291, p ¼ 0:44, corrected, d ¼ 0:10) or
PPA (mean difference: #0.0137, SEM: 0.0271, p ¼ 0:84, cor-
rected, d ¼ 0:09). We did not observe category-specific correla-
tions with either hippocampal region for OFA or OPA (all
p. 0:05). While these results are correlational rather than index-
ing connectivity directly, these results suggest that anterior hip-
pocampus may be more functionally connected with high-level
place areas PPA and RSC during viewing of famous places, and
more connected with the high-level face area ATFA during view-
ing of famous people.

PM and AT networks represent distinct semantic knowledge
While many investigations of category-specific brain activity
have focused on regions that differ in activation between cate-
gories, recent work based on functional connectivity findings
suggests that these regions are embedded within large-scale
networks that process distinct item and context information
(Libby et al., 2012). We examined two proposed networks, AT
and PM, that have been proposed to be optimized for distinct
forms of memory-guided processing (Ranganath and Ritchey,
2012). The AT network is thought to process information
about entities (people and objects), whereas the PM network
processes contexts (places and locations). We examined a
range of anatomic ROIs included in the AT and PM net-
works. Within each ROI, we tested whether the semantic
model accounted for unique variance after controlling for
visual similarity. We used a permutation test to correct for
FDR over ROIs within each network. We predicted that the
AT network would selectively represent semantic features of
people, whereas the PM network would represent semantic
features of places. While the semantic model focuses on con-
ceptual features of individual people and places, we also
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tested for geographical information about pla-
ces, which we predicted would be represented
in the PM network.

Consistent with our predictions, we found
that semantic features of people and places were
selectively represented in the AT and PM net-
works, respectively (Fig. 7A,B). Multiple regions
in the AT network showed evidence of repre-
senting semantic similarity of people, after con-
trolling for visual similarity. We observed
significant correlation with the semantic simi-
larity model in fusiform gyrus (z statistic mean:
0.31, SEM: 0.16, t(32) = 1.95, q ¼ 0:060, Cohen’s
d ¼ 0:34). We also observed significant correla-
tions in the IFG pars opercularis (mean 0.38,
SEM: 0.17, t(32) = 2.17, q ¼ 0:0506, d ¼ 0:38)
and pars triangularis (mean: 0.67, SEM: 0.17,
t(32) = 3.82, q ¼ 0:0029, d ¼ 0:66) as well as
orbitofrontal cortex (mean: 0.36, SEM: 0.16, t(32)
= 2.21, q ¼ 0:071, d ¼ 0:38). No regions in the
PM network were correlated with the semantic
similarity model for people (FDR q. 0:1).
While perirhinal cortex has been shown to rep-
resent the semantic features of common objects
(Clarke and Tyler, 2014; Martin et al., 2018),
here we do not find evidence that perirhinal
cortex represents semantic features of famous
people (p. 0:05, uncorrected), suggesting
that the semantic representations of people
may differ from the semantic representations
of objects.

While our initial analysis controlled for low-
level visual similarity, the people stimuli also
include a high-level visual category of gender that
may not be perfectly captured by the low-level
visual similarity model. To control for these
high-level visual differences, we tested whether
activation patterns in AT network regions that
correlated with the wiki2USE model are still cor-
related with semantic similarity after controlling
for gender. We found evidence of significant cor-
relation after controlling for gender in each
region, including fusiform gyrus (mean: 0.30,
SEM: 0.16, t(32) = 1.89, q ¼ 0:045, d ¼ 0:33), the
IFG pars opercularis (mean: 0.32, SEM: 0.18, t(32)
= 1.84, q ¼ 0:037, d ¼ 0:32) and pars triangula-
ris (mean: 0.62, SEM: 0.18, t(32) = 3.49,
q ¼ 0:0031, d ¼ 0:61), and orbitofrontal cortex (mean: 0.33,
SEM: 0.16, t(32) = 2.06, q ¼ 0:048, d ¼ 0:36). Finally, we tested
whether any regions demonstrated evidence of correlation with
the semantic similarity model after controlling for visual similar-
ity, gender, and occupation.We did not observe a significant cor-
relation in any region (FDR q. 0:1). Thus, we did not find
evidence that AT regions are sensitive to more detailed variation
in semantic similarity that is not explained by gender and occu-
pation; however, this null result may reflect a lack of statistical
power to detect nuanced differences in pattern similarity.
Overall, our results demonstrate that multiple regions in the AT
network are sensitive to semantic similarity of famous people.

In contrast, we found that semantic similarity of places was
represented in the PM network, in each of the regions we exam-
ined (Fig. 7B). We observed significant correlation with the
semantic similarity model in angular gyrus (z statistic mean:

0.37, SEM: 0.18, t(32) = 2.02, q ¼ 0:026, d ¼ 0:35), precuneus
(mean: 0.47, SEM: 0.12, t(32) = 3.72, q ¼ 0:00083, d ¼ 0:65),
PCC (mean: 0.50, SEM: 0.13, t(32) = 3.84, q ¼ 0:0012, d ¼ 0:67),
and PHC (mean: 0.49, SEM: 0.19, t(32) = 2.61, q ¼ 0:009,
d ¼ 0:45). Within the AT network, we observed a significant
correlation in fusiform gyrus (mean: 0.41, SEM: 0.15, t(32) = 2.77,
q ¼ 0:038, d ¼ 0:48). No other AT regions were significantly
correlated with the wiki2USE model (FDR q. 0:1). We next
tested, for each region that correlated with semantic similarity,
whether sensitivity to semantic similarity was related to high-
level visual place categories. We found that PCC was still signifi-
cantly correlated with the wiki2USE model after controlling for
category (natural vs manmade) and subcategory (e.g., river,
mountain; mean: 0.43, SEM: 0.16, t(32) = 2.77, q ¼ 0:024,
d ¼ 0:48). The other regions were not correlated with the
wiki2USE model after controlling for category and subcategory
(FDR q. 0:1).
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Figure 7. Semantic representations of people and places within the PM and AT networks. A, Semantic informa-
tion about people was represented within multiple regions within the AT network. These regions correlated with
the semantic model after controlling for visual similarity. B, Semantic information about famous places was
observed in each region within the PM network after controlling for visual similarity. C, Activity patterns in the
precuneus (PREC) and PHC correlated with the geographical distance between famous places, after controlling for
the semantic and visual models. Points represent individual participant z statistics. Error bars indicate 95% CIs.
pFDR q,0:1, corrected within each network. ANG, Angular gyrus; PRC, perirhinal cortex; AMYG, amygdala; FUS,
fusiform gyrus; TPO, temporal pole; OPER, pars opercularis; TRIA, pars triangularis; OFC, orbitofrontal cortex.
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We also found evidence of sensitivity to geographical distance
in the PM network, in precuneus (z statistic mean: 0.39, SEM:
0.17, t(32) = 2.25, q ¼ 0:056, d ¼ 0:39) and PHC (mean: 0.34,
SEM: 0.19, t(32) = 1.79, q ¼ 0:083, d ¼ 0:31) after controlling for
visual similarity and the semantic similarity model (Fig. 7C). The
other PM network regions did not correlate with the geographi-
cal distance model (FDR q.0:1). The anatomic precuneus ROI
partially overlaps with the functional RSC ROI, which we previ-
ously found to be sensitive to geographical distance. None of the
AT regions showed a significant relationship with geographical
distance (FDR q. 0:1). We next tested whether the regions that
correlated with geographical distance were still correlated after
controlling for the continent in which each place is located
(Fig. 4B). We found that precuneus was significantly corre-
lated with geographical distance after controlling for visual
similarity, semantic similarity, and continent (mean: 0.31,
SEM: 0.17, t(32) = 1.85, q ¼ 0:069, d ¼ 0:32), but PHC was
not (mean: 0.011, SEM: 0.194, t(32) = 0.056, q ¼ 0:67,
d ¼ 0:0097). These results suggest that PHC and precuneus
are sensitive to geographical distance between places, and
that precuneus is sensitive to geographical distances that are
finer than the level of continents. To visualize the relation-
ship between geographical distance and precuneus pattern
similarity, we calculated mean pattern similarity (after con-
trolling for visual similarity and semantic similarity) for dif-
ferent geographical distance bins (Fig. 8).

We next directly tested our overall hypothesis that place
semantic similarity would be represented in the PM network
while person semantic similarity would be represented in the AT
network. For each participant, we calculated the mean z statistic
of the test of correlation with the semantic similarity model after
controlling for visual similarity, averaged over regions within
each network. During viewing of people, we found that AT
regions were more correlated with the semantic similarity model
than PM regions were (mean difference: 0.29, SEM: 0.11,
p ¼ 0:015, permutation test, d ¼ 0:45). During viewing of pla-
ces, PM regions were more sensitive to semantic similarity
than AT regions (mean difference: 0.38, SEM: 0.11,
p ¼ 0:0014, permutation test, d ¼ 0:60). Finally, there was a
significant interaction between stimulus category (person or
place) and network (AT or PM; mean difference: 0.67, SEM:

0.14, p ¼ 0:00004, d ¼ 0:84). This interaction was still signif-
icant when controlling for both low-level visual similarity
and high-level visual categories (mean difference: 0.50, SEM:
0.15, p ¼ 0:0019, d ¼ 0:60). These results provide evidence
that semantic similarity of famous people and places is repre-
sented in distinct networks.

Data from the similarity judgment task indicated that the fa-
mous places were, on average, less familiar than the famous peo-
ple (see Materials and Methods). To control for this difference in
familiarity, we used a follow-up analysis that matched familiarity
of people and places. We restricted the analysis to a set of 19
items from each subcategory (female, male, manmade, and natu-
ral) that had matched familiarity. In each region, we calculated a
permutation z statistic of correlation with the semantic similarity
model after controlling for low-level visual similarity. We found
that there was a significant interaction between stimulus category
(person or place) and network (AT or PM; mean difference:
0.49, SEM: 0.16, p ¼ 0:0051, d ¼ 0:52), even after controlling for
stimulus familiarity. These results provide evidence that the rep-
resentational differences we observed between the AT and PM
networks are not because of differences in familiarity between fa-
mous people and places.

Searchlight analysis reveals semantic features of both people
and places in hippocampus
The hippocampus is anatomically connected with perirhinal cor-
tex, PHC, and RSC (Wyss and Groen, 1992; Witter et al., 2000)
and has been proposed to be involved in domain-general proc-
essing (Ranganath and Ritchey, 2012; Morton et al., 2017). As
research suggests that hippocampus contains a number of im-
portant functional subdivisions (Blessing et al., 2016), we used a
searchlight analysis to examine spatially localized representa-
tions in hippocampus. The searchlight was restricted to
hippocampus, as defined for each participant based on auto-
matic segmentation of their high-resolution T2 coronal scan.
For both people and places, we tested for correlation with the
semantic model while controlling for visual similarity. For
places, we also tested for coding of geographical distance
while controlling for visual similarity and semantic similar-
ity. Searchlight results were transformed to our common
template space and tested for significant partial correlation
with cluster correction within hippocampus.

Consistent with our hypothesis that hippocampus would rep-
resent semantic knowledge of both people and places, we found
that the semantic similarity model explained unique variance in
activation patterns within right hippocampus, for both people
and places (Fig. 9A). We did not observe any significant clusters
exhibiting geographical distance coding. We next tested
whether the person and place semantics clusters were corre-
lated with the semantic similarity model after controlling for
stimulus subcategories. In the person cluster, we found that
person activation patterns were still significantly correlated
with the semantic similarity model after controlling for visual
similarity and gender (Fig. 9B; z statistic mean: 0.51, SEM: 0.16,
p ¼ 0:0017, Cohen’s d ¼ 0:55). Furthermore, this cluster was
still significantly correlated with the semantic similarity model
after also controlling for occupation (mean: 0.52, SEM: 0.12,
p ¼ 0:00014, d ¼ 0:73). In the place cluster, we found that
place activation patterns were still significantly correlated with
the semantic similarity model after controlling for visual similarity,
place category (manmade vs natural), and subcategory (e.g., river,
mountain; Fig. 9C; mean: 0.40, SEM: 0.15, p ¼ 0:004, d ¼ 0:48).
Our findings suggest that hippocampus represents conceptual
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Figure 8. Geographical distance coding in precuneus. Average neural distance between
activation patterns observed during presentation of places increased as a function of the geo-
graphical distance between them. The neural distance measure controls for visual similarity
and semantic similarity. Error bars indicate 95% CIs. The analysis used to select this region is
not independent from the relationship plotted here, so effect sizes may be inflated.
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distance between items, both for famous peo-
ple and places, and is sensitive to fine-grained
differences rather than purely reflecting stim-
ulus subcategories.

Discussion
While visual perception of people and pla-
ces involves distinct brain regions
(Kanwisher et al., 1997; Epstein and
Kanwisher, 1998; Lee et al., 2008; Harry et
al., 2016), it is unclear whether semantic
knowledge of people and places is repre-
sented within the same (Thompson-Schill
et al., 1997; Gorno-Tempini and Price,
2001; Damasio et al., 2004; Patterson et al.,
2007; Binder and Desai, 2011; Ross and
Olson, 2012) or distinct regions (Simmons
and Martin, 2009; Ranganath and Ritchey,
2012; Olson et al., 2013). Using a novel
method to identify semantic knowledge
representation, we found that knowledge
about famous people is represented within
the AT network, while knowledge of fa-
mous places is represented in the separate
PM network. Furthermore, hippocampus
represented semantic knowledge of both
people and places, consistent with pro-
posals that hippocampus supports domain-
general processing via connections with
AT and PM areas (Staresina et al., 2011; Ranganath and Ritchey,
2012).

Quantitative measures of semantic similarity can be used
to identify neural representations of semantic knowledge
(Bruffaerts et al., 2019). Existing methods for quantifying
semantic knowledge require large text corpuses or relational
databases (Huth et al., 2012; Carlson et al., 2014), which are
difficult to obtain for contemporary famous people and places.
To address this issue, we used recently developed natural lan-
guage models that can quantify semantic meaning using
smaller text samples. We applied these models to text from
Wikipedia to generate two semantic similarity models, wiki2-
vec and wiki2USE. Both models compress information in a
given article into a single vector representation that summa-
rizes information about each person or place. Our models are
sensitive to multiple features of both people and places and
predict human judgments of semantic similarity. The
wiki2USE model performed best for both people and places,
suggesting that it may be useful for model-based neuroimag-
ing (Bruffaerts et al., 2019) using a range of different stimuli.

Using the wiki2USE model to interrogate our neural data, we
found that the ATL was sensitive to the semantic similarity of fa-
mous people, consistent with its proposed role in social cognition
(Simmons and Martin, 2009; Ranganath and Ritchey, 2012;
Olson et al., 2013). Prior work found evidence that ATFA repre-
sents recently acquired semantic knowledge of fictional people
(Collins et al., 2016); our results extend this study by showing
that ATFA also represents knowledge about famous people
learned over the course of years. We did not find evidence for
semantic representation of people in perirhinal cortex, despite
prior work demonstrating its involvement in face perception
(Barense et al., 2010a; Mundy et al., 2013) and representation
of both visual and semantic similarity of objects (Martin et al.,

2018). Our results provide empirical support for a recent theo-
retical account suggesting that ATFA function may parallel
that of perirhinal cortex in object representation by integrat-
ing both perceptual and semantic features of individual people
(Collins and Olson, 2014). Prior work has proposed that ATL
represents domain-general semantic knowledge (Patterson et al.,
2007; Ralph et al., 2017; Rice et al., 2018) and facilitates process-
ing of unique people and places by connecting semantic knowl-
edge of unique entities with their proper names (Gorno-Tempini
and Price, 2001; Damasio et al., 2004; Tranel, 2006; Ross and
Olson, 2012; Schneider et al., 2018). However, we did not find
evidence for semantic representation of places within ATFA or a
larger temporal pole ROI. Null findings in ATL, however, must
be interpreted with caution given the increased signal dropout
and distortion in this region. While we used multiband imaging
to improve image quality in ATL, other techniques, such as mul-
tiecho EPI (Poser et al., 2006; Halai et al., 2014), may improve
signal in future studies.

We found that IFG, which is connected with the ATL
(Thiebaut de Schotten et al., 2012; Hsu et al., 2020), also repre-
sents semantic similarity among people. IFG has been proposed
to have a domain-general role in retrieval of semantic knowledge
(Thompson-Schill et al., 1997; Binder et al., 2009) and has been
found to be activated during encoding (Simmons and Martin,
2009) or retrieval (Rice et al., 2018) of semantic knowledge about
places. However, we did not observe semantic knowledge repre-
sentation of places in IFG. IFG is thought to resolve interference
during semantic retrieval (Thompson-Schill et al., 1997; Badre
and Wagner, 2007). For instance, IFG is engaged when reading
words with ambiguous meaning and may guide selection of rele-
vant semantic representations in ATL (Musz and Thompson-
Schill, 2017). IFG may serve a similar role when recognizing fa-
miliar people (e.g., when disambiguating two similar-looking
acquaintances), by selecting relevant semantic knowledge about
a specific person.
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Figure 9. A, We used a searchlight analysis to examine whether hippocampus is sensitive to the semantic similarity of
individual people and places. A cluster in hippocampus exhibited activation patterns whose similarity was correlated with
semantic similarity between people after controlling for visual similarity. Another cluster showed evidence of representing
semantic similarity of places after controlling for visual similarity. Lines in the sagittal view illustrate cutting planes for the
coronal sections. Outline indicates searchlight volume. B, Pattern similarity in the people cluster was still significantly corre-
lated with the semantic model after controlling for gender and occupation, suggesting that hippocampal patterns reflect
detailed semantic features. C, Pattern similarity in the places cluster was still significantly correlated with the semantic
model after controlling for category (manmade vs natural) and subcategory (e.g., river, mountain). Error bars indicate 95%
CIs. pp, 0.05.
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We found that place semantics were represented distinctly
from person semantics in a PM network, comprising PHC
(including PPA), precuneus, PCC, and angular gyrus. PHC, pre-
cuneus, and PCC have previously been implicated in perception
and discrimination of places (Epstein and Kanwisher, 1998; Lee
et al., 2008; Costigan et al., 2019), and PHC is sensitive to natural
scene categories (Walther et al., 2009). Our results suggest that
these regions may also represent the semantic relatedness of
unique famous places. However, place-sensitive regions have
previously been shown to represent high-level visual features
that discriminate between place categories (Kravitz et al., 2011).
Critically, we found that PPA and PCC were still correlated with
the place semantic similarity model after controlling for place
category, suggesting that they represent semantic knowledge
above and beyond high-level visual information. We also found
that precuneus and RSC were sensitive to the geographical dis-
tance between places, consistent with prior work implicating
these regions in spatial memory and navigation (Epstein, 2008;
Vann et al., 2009; Hebscher et al., 2018). While RSC reflected
only coarse distance coding, we observed finer distance coding in
precuneus. This finding is consistent with evidence that precu-
neus represents detailed features of memories during vivid recall
(Sreekumar et al., 2018).

While the AT and PM networks are both involved in episodic
memory (Ranganath, 2010; Staresina et al., 2011; Cooper and
Ritchey, 2019; Renoult et al., 2019), the PM network in particular
has long been linked to episodic memory processes that support
retrieval of unique events (Vincent et al., 2006; Rugg and
Vilberg, 2013; Ritchey and Cooper, 2020). However, other recent
data indicate that the PM network is activated during retrieval of
abstract knowledge (Gilboa and Marlatte, 2017) and forms gen-
eral knowledge representations of places that are derived from
many unique, real-world events (Ranganath and Ritchey, 2012;
Baldassano et al., 2018); consistent with these findings, we found
that PM regions represent the general knowledge encoded in the
wiki2USEmodel. PM network representation of place knowledge
in the present study may thus reflect retrieval of abstract knowl-
edge rather than conscious recollection of personally experienced
events (Tulving, 1972, 2005). Abstract representations of places
in the PM network may contribute to episodic memory, how-
ever, by providing a framework through which future events are
processed, encoded, and retrieved (Ranganath and Ritchey, 2012;
Robin et al., 2016, 2018; Ritchey and Cooper, 2020).

The hippocampus is anatomically and functionally connected
with both the AT and PM networks (Witter et al., 2000; Libby et
al., 2012) and is thought to guide memory reactivation in both
networks (Ranganath and Ritchey, 2012; Ritchey et al., 2015;
Cooper and Ritchey, 2019). Consistent with this hypothesis, we
found that ATFA is functionally coupled with hippocampus dur-
ing viewing of familiar people, whereas PPA and RSC are func-
tionally coupled with hippocampus during viewing of familiar
places. Furthermore, we found evidence that hippocampus
represents detailed semantic similarity of both people and
places. Hippocampal activation patterns correlated with
semantic similarity even after controlling for the gender and
occupation of people or the category (e.g., river, mountain)
of places. This finding converges with prior results demon-
strating single-unit responses in human hippocampus that
are specific to individual people and places (Quiroga et al.,
2005). These responses are abstract, responding similarly to
different pictures or the written name of that person or place.
Semantic representations in hippocampus may facilitate rea-
soning about high-level item properties, such as conceptual

categories (Mack et al., 2016) and social status (Tavares et al.,
2015), while also serving as building blocks for representing
new memories (Quiroga, 2012).

Collectively, our results indicate that semantic knowledge for
people and places is distributed across distinct AT and PM net-
works. These networks may group together individual items
based on relevant features for each category. For example, places
with similar properties, such as airports, are represented simi-
larly in the PM network (Baldassano et al., 2018), while people
with the same occupation may be represented similarly within
the AT network. These separate networks may help guide do-
main-specific behavior; for example, AT network representa-
tions may facilitate accounting for a person’s occupation and
social status when interacting with them. Our results indicate
that hippocampus may further guide reactivation of distinct
PM and AT representations when decisions rely on both place
and social information. Broadly, our findings suggest that
semantic representation may be hierarchical; distinct large-
scale networks represent person and place knowledge, whereas
finer distinctions within each category are represented within
each network.
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